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This thesis describes the incremental approach used to develop the first

known C-based, UNIX-supported translator/analyzer for the Very High Speed

Integrated Circuit (VHSIC) Hardware Description Language (VHDL). This

research consisted of defining a VHDL Intermediate Access (VIA) format as a

translation target, dividing VHDL into manageable segments, describing

VHDL-to-VIA relationships, designing software modules to create those

relationships, and evaluating the functional and performance characteristics

of the analyzer. The intermediate form, VIA, was based upon the Design Data

Structure (DDS) developed by Al ice Parker and David Knapp.

Three of the nine VHDL language subsets identified were implemented in

the language analyzer. In increments, these subsets were manually translated

into specific examples of an enhanced version of DDS represented in a pile

file format (VIA). These examples were then used as specifications for

designing program modules to automatically translate VHDL code into VIA.

After the program modules were written, these same examples were used as

formal functional test specifications.

x
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I. Introduction

Statement of the Problem

Key members of the microelectronics design community, such as the

Institute of Electrical and Electronics Engineers (IEEE) and the Air Force, are

on the verge of approving a standard hardware description language, called

Very High Speed Integrated Circuit (VHSIC) Hardware Description Language

(VHDL). However, this approval is based solely on a theoretical evaluation of

the language, rather than on practical experience gained from integrating

VHDL with automated VHSIC design tools.

0 Background

The Air Force recently forecasted 39 technological goals for the next 25

years. One of the 39 goals is unified life cycle engineering, a "unified,

automated design methodology treating performance, manufacturability, and

supportability concurrently in computer and design systems" (Kulp, 1986).

One step toward the realization of unified life cycle engineering is a

hardware description language, such as VHDL, which can both model hardware

performance and document hardware design. A hardware description language

is a computer language which is used by engineers to describe and to model

very high speed integrated circuits and other systems.

Although many hardware description languages exist for describing

4VHSIC systems, no language has been accepted as an industry-wide standard.

1.1



Recognizing this fact, the IEEE selected VHDL Version 7.2 as the basis for a

draft hardware description language standard. VHDL contains rules for

specifying system requirements, system designs, system components,

component behaviors, and multiple component Interactions.

Some revisions to the VHDL language were anticipated before the

international community approved the standard (AFWAL, 1986). The potential

areas for revision were identified and evaluated during 1986. The draft IEEE

VHDL Reference Manual (CAD Language Systems, 1986) was released in June

1986. The proposed draft standard was reviewed by the IEEE community

during the later half of 1986, and the final standard is scheduled for release

in early 1987 (AFWAL, 1986).
0

To gain the experience with VHDL needed to refine the standard prior to

adoption, it seemed necessary to provide the Air Force with some VHDL

support tools prior to the delivery of the official contracted VHDL

environment. Consequently, in 1985, an Air Force Institute of Technology

(AFIT) faculty member proposed that a prototype VHDL support environment

be developed by AFIT students. The proposed AFIT VHDL Environment (AVE),

depicted in Figure 1.1, consists of six high level components: a VHDL

analyzer, a VHDL code checker, a software simulator, a simulator generator, a

hardware simulator engine, and a VHDL microcode compiler (Carter, 1985).

The VHDL analyzer is a computer program which translates VHDL

programs describing circuits into an intermediate form which is eventually

processed by other tools in the environment. A pre-prototype VHDL analyzer

1.2



6F

Sot~nre

Siao Simlatrine

Vlg~S, Simulatorgh-

VHDL

VNDL micro

Cb~kW

Figure 1.1: ART VHDL Environment.

(see Figure 1.2) was developed by the author for a class project. This

pre-prototype analyzer successfully recognized the syntax of the entire VHDL

language.

A code checker is a computer program which analyzes the VHDL program

to determine logic errors, circuit timing errors, and potential optimization

areas. The VHDL analyzer initiates the VHDL code checker when a user

requests the action.
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Figure 1.2: Pre-Prototype Syntax Analyzer Design

A software simulator Is a computer program which models the behavior
of the circuit. The circuit represented In the Intermediate files describes the

signals, the data, and the control sequencing used by the software simulator.

A simulator generator is a computer program which controls the

operation of a different computer (the hardware simulation engine) based
upon information contained in the intermediate files. The simulator
generator and the software simulator conceptually perform the same control

tasks, but the simulator generator also controls the parallel tasking of the

hardware simulation engine.

A hardware simulator engine Is a computer hardware system designed to
model the behavior of circuits. The hardware simulator engine provides the

same information the software simulator provides. The hardware simulator

1.4



W engine is expected to model the circuit up to an order of magnitude faster
than the software simulator.

A microcode compiler Is a computer program which reads procedure

Inputs and the Intermediate code produced by the VHDL analyzer to generate

tables of Information in the form of computer code. This computer code

generates the microcode for the computer described by the VHDL code.

Scope

The primary goal of this research endeavor was to Implement a prototype

VHDL language analyzer which provided the functional capabilities necessary

* to perform as a front-end processor for a multiple tool design environment.

To achieve this goal, the following subtasks were established:

1. Select an Interface structure for the VHDL Design Environment.

2. Identify the VHDL constructs to implement

3. Identify the logical relationship between the VHDL constructs and the

interface structure.

4 Design modules to generate the intermediate structure.

5. Create the package STANDARD specified in the VHDL Language Reference

Manual (Intermetrics, 1 985a: B-7 to B-9).

6. Test and evaluate the language analyzer.

This research was considered to be finished when:

1. the analyzer's functional capabilities and requirements were defined;

2. the language analyzer was designed, coded, and tested;



*3. the functional requirements were compared to the language analyzers

performance; and

4 the results were reported in this thesis.

Certain less Important areas were not addressed by this study because of

resource constraints:

1. Optimization of the Intermediate structure generated by the language

analyzer was excluded from the scope of the research because the VHDL

language will change next year. As stated earlier, In 1986 the IEEE was

refining VHDL to become the industry standard hardware description language.

During the standardization process, the IEEE changed VHDLs grammar. The

constructs of the language subject to change were not known at the start of

, this research endeavor. After the language has been approved by the IEEE, the

VHDL language analyzer should be modified to ref lect the changes. Because of

these facts, research time considered for allocation to optimization would

best be used elsewhere.

2. Creation of a design library and a design library manager, with the

exception of the STANDARD package mentioned earlier, was excluded from the

scope of the research due to the complexity of the task. The package

STANDARD is essential for the APIT VHDL Environment because VHDL

semantics assume the existence of the package STANDARD. Even in this case,

the design library manager function can be provided by the UNIX support

environment.

1.6



, Research Approach

The following approach was used to address research subtasks in this

project

I. Select an Interface structure for the VHDL Design Environment.

Selecting a structure for the Intermediate files is the process of analyzing

the VHDL language to determine a method for representing the content of a

VHDL source program. Two candidate methods are Intermediate VHDL Access

Notation (IVAN) as presented In the VHDL Design Library Specification (Texas

Instruments, 19843-i to 3-21) and Design Data Structure (DOS) as presented

by Knapp and Parker of the University of Southern California (Knapp and

Parker, 1984:.9-27). Both methods are well documented, and either would

have enabled the project to continue with minimum design time. An

alternative to using an existing structure was to design a structure explicitly

for VHDL. This alternative would have required at least six months of

research time. The added research time would have delayed the production of

the intermediate f Iles, which were required for the parallel development

projects. Therefore, one of the documented structures was selected based on

a comparison of their respective capabilities to represent the semantic

content of VHDL. Selecting the structure which best represents VHDL
semantics Insured the tools under development had access to efficient circuit

descriptions.

2. Identify the VHDL constructs to implement. Identifying the VHDL

~ constructs to implement is the process of classifying the language rules into

1.7



six or more subsets of rules. To expedite implementation of some capability

for the parallel projects to use, the rule subsets were ranked in the order of

expected Implementation complexity. As each rule set was added to the

analyzer, the analyzers capabilities expanded. Computer code was designed

and tested to validate the expanded capabilities. The completed analyzer will

eventually contain all the rule subsets.

An alternative to creating subsets for the language would have been to

design each phase of the analyzer separately. For example, the lexical

analyzer would have been completely designed and tested; then, the parser

would have been designed and tested. This alternative method would mean the

Intermediate f Iles could have been generated only after the entire project

* was complete. Traditionally, the alternative method has been used, but In

this case four parallel development projects (see Figure 1. 1) required the

intermediate flies. The method of selecting subsets of the VHDL language

allowed earlier access to the intermediate f Iles, enabling the parallel

projects to progress.

3. Identify the logical relationship between the VHDL constructs and the

Interface structure. Identifying the logical relationship between the VHDL

constructs and the Interface structure is the process of determining how the

semantics of the language are explicitly represented in the Intermediate

form. The language subsets (identified In the preceding task) were

iteratively decomposed to provide examples of VHDL source code and the

intermediate form. The examples served as a guide for designing the modules

In step 4; they formally specified the interface for the parallel projects; and,



*they formed the test cases used for validation in step 6.

An alternative to the iterative approach was to decompose the entire

language before preceding to the next step. The approach would reduce the

risk of errors due to an Incomplete understanding of the complex logical

relationships, but In this case four parallel development projects (see Figure

1.1) required the intermediate files. The iterative method allowed earlier

access to the Intermediate files, enabling the parallel projects to progress.

4 Design modules to generate the intermediate fIles. Designing modules to

generate the intermediate structure is an iterative process of determining

the actions required for generating the Intermediate files. The example code

* created in step 4 was used to create tables and narrative descriptions

specifying the required actions. Once the actions were identified, programs

were written to simulate the actions. The design process is a fundamental

step for any software development project. In this case, the design process

not only documented the detailed design, but also, formed the basis for the

maintenance manual.

5. Create the Dackage STANDARD soecified in the VHDL Lanue Reference

InuaL(Intermetrics, 1985a B-7 to B-9 ). Creating the predefined

attributes, types, and subtypes of the package STANDARD Is the process of

writing VHDL source code to build the primitive environment for VHDL as

defined In the language reference manual (LIRI). This environment was not

essential for the creation of the language analyzer, but it was essential for

the AFIT VHDL Environment. Without the primitive types and attributes

1.9



specified in the LIR1, each person who wrote a VHDL program would need to

write the code for the primitive types and attributes he used. Additionally,

the semantics of the VHDL language assume the existence of the package

STANDARD. Step 6 used the VHDL source code for the package STANDARD.

6. Test and evaluate the languaoe analyzer. Testing and evaluating the

language analyzer is the process of executing the VHDL language analyzer,

checking the results against the predicted results, verifying the expected

output, and determining run time performance. All VHDL source code written

for steps 3 and 5 was applied as test data. Additionally, VHDL written by

others, such as the AFIT VHDL Beta Test Team and AFITs hardware

architecture classes, was applied as test data The raw data was gathered

*from the each test and statistically analyzed to determine the run time

performance of the language analyzer. The data collection techniques and the

specific metrics used In analyzing the performance are specified In Chapter 5.

Mtaximum Expected Gain

The maximum expected gain for this research endeavor was the

development of the first known UNIX-resident VHDL language analyzer which

successfully recognized the entire VHDL language and produced a useful

intermediate form. The language analyzer was targeted to emphasize

function, that Is, to handle the entire language with satisfactory performance

as a secondary goal. Satisfactory performance was defined as averaging less

than 3 minutes CPU time for analyzing a single I 000-word VHDL source code

S file.

1.10
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* Sequence of the Presentation.

This thesis contains six chapters with three supporting appendices.

After the introduction In Chapter 1, Chapter 2 presents a survey of previous

research on languages, on VHDL, and on an Intermediate language abstraction

called Design Data Structure (DOS). Chapter 3 describes the AFIT VHDL

Language Analyzers system design, specifies the system requirements, and

describes the Intermediate form selected. In turn, Chapter 4 describes the

detailed design of seven Incremental designs which as a composite create the

language analyzer. The test methodology and analytical results are presented

In Chapter 5. Then Lhapter 6 summarizes the conclusions and recommends

future research endeavors.

IV Three appendices were written to support the body of this thesis.

Appendix A contains a list of VHDL language requirements which were

specified in the VHDL Language Reference Manual (Intermetrics, 1985a), but

were not implemented In the prototype language analyzer. Appendix B

contains the complete VHDL Intermediate Access (VIA) format specification.

Appendix C contains selected examples of test data which were used to

validate the prototype language analyzer.

I. II
-1W.



11. Survey of Previous Research

OVER VI EW.

The development of electronic systems is a complicated process which

encompasses many diverse tasks. These tasks Include, but are not limited to,

specifying system performance requirements; specifying system functional

requirements; functional design; logic design; simulation and modeling; mask

placement and routing; fabrication; and testing. As with any research

endeavor, the development of electronic systems is Inevitably subject to

change (Dewey and Gadient, 1986: 12) due to either fluctuating user

requirements or advances In technology. Regardless of the cause, the effect Is

the same -- Increased cost and increased time expenditures.

In recent years, to reduce cost and time (Dewey and Gadient, 1986: 13),
many hours of research have been dedicated to the design and development of

computer-aided design environments specifically tailored for electronic

system design. From these research hours, many Hardware Design Languages
(HDLs), such as VHDL, have emerged. To support these HDLs, language
environments, language analyzers, and intermediate language representations

have evolved. In the following sections, after a general background survey on
languages, VHDL is briefly described, and an Intermediate language

abstraction, called Design Data Structure (DDS), is discussed.
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Languages.

Many languages currently exist which support the various electronic

system design tasks (Aylor, Waxman, and Scarratt, 1986: 17). Although some

traditional general-purpose programming languages are still used for

designing electronic systems (Katzenelson and Weitz, 1986: 371), such design

programs are time-consuming to write and tend to be application-specific,

offering minimal, if any, reuse capability. Katzenelson and Weitz showed the

importance of applying data abstraction to the design of electronic systems to

reduce time and increase the generic reuse capability. They also showed how

data abstraction can lead to specification clarity and avoid unnecessary

program detail.

Some high level general-purpose programming languages support data

abstraction and thereby allow structural and procedural descriptions of an

electronic component to be developed. Since most high level language

statements are sequentially executed, a general-purpose language programmer

developing a simulation model of an electronic component has full

responsibility to encode control flow to simulate the concurrent effects of the

electronic component. This extra code tends to proliferate unnecessary

program detail, which Katzenelson partially avoids by using a high level

language with data abstraction.

Due to the insufficiencies of traditional languages a new class of

languages, Hardware Description Languages (HDL's), emerged in the 1960's.

Initially many of the HDL's, such as IDL (Interactive Design Language) or CDL

2.2



(Computer Design Language), were designed to handle a relatively small class

of electronic components. IDL was developed by International Business

Machines (IBM) Corporation to design programmable logic arrays (PLA's); and

CDL was developed to teach digital logic design. [lore recently, HDL's have

matured to describe a more general class of electronic components (Aylor,

Waxman, and Scarratt, 1986: 22).

In their study of HDL's, Aylor, Waxman, and Scarratt provided 12 factors

for evaluating modern HDL's. Among these factors were the "range of hardware

to be described ..." and "... language extensibility". The authors Indicated that

a HDL should "support the complete description and design process" from the

most abstract to the most detailed description of a hardware component.

*Finally, the language should be technology independent and capable of growing

as technology advances (Aylor, Waxman, and Scarratt, 1986: 18-22).

Dewey and Gadient supported the choice of these criteria, stating that

simultaneously specifying an interface and documenting a design lead to the

assurance of having a system's properties and characteristics accurately

reflected in the completed design (Dewey and Gadient, 1986: 13). In fact, as

the first contract monitor for VHDL, Dewey embedded these criteria into the

specification for VHDL.

VHIIC Hardware Description Language (VHDL).

In response to such perceptions as these, the requirements for VHDL were

I,. established In 1981 by the United States Air Force (as agent for the

2.3
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Department of Defense) in an attempt to "reduce IC design time and effectively

insert VHSIC technology into military systems" (Dewey and Gadient, 1986: 12).
b

In the early stages of VHDL design, an extensive analysis of existing languages

and their environments was performed to extract the major advantages of each

(Aylor, Waxman, and Scarratt, 1986: 17). By 1983 the requirements were

firmly established and the design of the VHDL language specification began

(Dewey and Gadient, 1986: 12).

The language which most greatly influenced the grammar of VHDL was

Ada, a high level general-purpose programming language which was also

sponsored by the Department of Defense. Like Ada, VHDL has both the

traditional procedural and functional capabilities as well as the more modem

. capabilities associated with data abstraction, such as type definition, subtype

definition, operator overloading, and packaging. Yet, unlike Ada, VHDL Is a

hardware description language. The difference is fundamental: a hardware

component is a physical unit which operates on all inputs concurrently to

produce an output. To describe hardware accurately, three design entities

were incorporated into VHDL: interfaces, architectures and configurations

An interface specifies the physical input/output ports available on a

semiconductor chip; an architecture (the principal unit used to describe a chip)

specifies the chip's internal operation; and a configuration specifies how the

chip's ports are connected to the external world, such as board connections.

Functional subdivision into these three design entities provides the capability

to describe differing chip architectures without changing the ports or the port

connections; it also permits hierarchically defined architectures. An abstract

example of the design entity relationships is depicted in Figure 2.1.

2.4
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Figure 2.1: VHDL Design Structure.

A chip description can be constructed hierarchically, using either

concurrent statements or sequential statements. Concurrent statements are

statements which simultaneously execute, while sequential statements

execute in the order which they are encountered. The architecture which

contains only concurrent statements is called a structural description, while

the architecture which contains only sequential statements is called a

behavioral description. An architecture can contain both concurrent and

sequential statements. Concurrent statements primarily operate on sighals,

while sequential statements operate on variables. A signal is similar to a

2.5
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variable, except that signals include the notion of time.

Although the preceding discussion of VHDL was necessarily cursory, the

VHDL Language Reference Manual (Intermetrics, 1985a) contains a complete

description of the language. In the following section, a general background for

an intermediate VHDL data structure, called Design Data Structure (DDS), is

discussed

A Design Data Structure (DDS).

DDS (Afsarmanesh and others, 1985: 14-44) was developed by Knapp and

Parker in 1984 at the University of Southern California. DDS is a method of

, representing four abstract views of a hardware model: dataflow, timing,

structure and physical (Knapp and Parker, 1984: 10-13). The dataf low view

represents functions and the values associated with a functional

transformation. The timing view represents the range of time under which the

transformations occur. The structural view represents a schematic diagram

with its components and interconnections. The physical view1 , in contrast to

the structural view, represents the actual size and placement of a component

and the size and placement of wires.

The four abstract views are not independent. When considered together

with their dependencies, the views form a directed acyclic graph. Figure 2.2

1. Within the scope of the prototype AFIT VHDL Environment (AVE) project, the physical view of
.., DOS will not be used. However, the concepts of the physical view will be preserved for eventual

integration of the AVE into a unified AFIT VLSI design environment which uses one central
database created using the con epts of DDS
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model
0I

dataf low timing structural physical

Figure 2.2: Directed Acyclic Graph.

presents a simple directed acyclic graph which shows the four views of a

* hardware model. In graph theory, the circles in Figure 2.2 would be called

vertices or nodes. Yet, within the scope of DOS, the terms vertex and nod

are not synonymous. The circles are called circles or vertices; the term /v&

is a name for a type or a class of vertices. Furthermore, in graph theory, the

arrows in Figure 2.2 would be called arcs or relations Within the scope of

DOS, the arrows are called arrows, re/at/ons /ps or bindings The pattern

within a circle represents the type of vertex. A clear circle always has a type

name associated with the vertex. For Instance, the circle with vertical bars in

Figure 2.2 is a vertex of type dataflow In Figure 2.3, the clear circle at the
top of the figure Is a model vertex, the circle with the horizontal lines is a

timing vertex, and the timing vertex is bound to a range vertex. The term

sitspace means the set of vertices and bindings subordinate to a dataf low,

timing, structural, or physical vertex. In Figure 2.2, the dataf low subspace

consists of one vertex, the dataf low vertex. In Figure 2.3, the dataf low
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model

node module net

range

value carrier block

Figure 2.3: Hierarchical Tree of a Model.

subspace consists of three vertices and two bindings.

The primary graph for representing any hardware model Is the tree

depicted in Figure 2.3. The tree represents the hierarchy of the model, with

the first level of the hierarchy representing the dataf low, timing, structural

and physical subspaces. Each subspace Is further decomposed into one or more

components. The dataf low subspace consists of nodes and values. The node
vertices represent functional transformations. The value vertices represent

the results of functional transformations. The timing subspace consists of
ranges of time. The range vertices represent an interval of time required to

control the flow of the functional transformations. The structural subspace

consists of carriers and modules. The carrier vertices represent
Interconnecting lines on a schematic diagram over which the values In the
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model model

node module value carrier

range range

Figure 2.4: Inter-Subspace Relationships.

dataf low subspace are carried. The module vertices represent the components

on a schematic diagram, within which functional transformations occur. The

physical subspace consists of blocks and nets. The block vertices represent

the physical features or a design mask layout. The net vertices represent

interconnecting wires in the design layout. Blocks and nets are related to

modules and carriers, but the blocks and nets have attributes such as size,

orientation, layer, and technology.

As the preceding discussion pointed out, the subspaces are interrelated In

several ways. The black triangles In Figure 2.4 represent the Intersubspace

bindings which occur at a lower level In the hierarchy. These Intersubspace

bindings transform the hierarchical tree into a directed acyclic graph. As

Figure 2.4 shows, two distinct Inter-subspace bindings exist:
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model

values

Figure 2.5: Dataflow's One-to-Many Relationships.

carrier-value-range and module-node-range bindings (Knapp and Parker, 1984:

14). Both Inter-subspace bindings change with respect to time. For Instance,

suppose at time to wire A carries a 5 volt charge, and at time t I the charge Is

drained. In this simple example two carrier-value-range bindings are

established: A-5-t 0 and A-0-t 1 . Additionally, a binding Internal to the time

subspace was established: time to occurs before time t I .

The root of a subspace has a one-to-many relationship with Its

subordinate vertices. For Instance, Figure 2.5 shows a model whose dataf low

subspace has two nodes and six values while the other subspaces have no

subordinate vertices. A model such as this could easily represent all that Is

known about a hardware component at the earliest stage of the design process.

For example, perhaps the designer knows the initial conditions for two
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F igure 2.6: Inter-Model Binding.

functions which will be performed. As the design process continues, the

* designer may discover that the two functions represented by the nodes in

Figure 2.5 are actually identical operations which could be represented by a

second model. The second model would have a set of subspaces as depicted in

Figure 2.6. At this stage of the development, both nodes In the f irst model

point to one copy of the second model. At some point in the design process,

the designer would have sufficient Information about both models to describe

their structure and behavior. At that time, two copies of the second model

would be created and Inter-model subspace bindings would be created for allI

subspaces. The inter-model subspace binding essentially reflects shared

assets.

Knapp and Parker present a complete list of characteristics of these

subspaces and the reader is ref erred to their work f or f urther detailI (Knapp

and Parker, 1984: 35-6 1).
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OSummary.

Although electronic circuits were first modeled using high level software

languages, the need to reduce cost, to reduce time, and to simplify

documentation led to the development of VHDL. VHDL has not only the

programming power of a general-purpose programming language, but also,

three design entities (interfaces, architectures and configurations) which

enable modeling an electronic circuit. These entities, coupled with the

embedded concepts of signals and concurrent statements, strengthen VHDL.

VHDL allows top-down design using architectures independent of the interface

and configuration. The hierarchy embedded in VHDL architectures can easily be

preserved and represented in the Design Data Structure (DOS) of Knapp and. Parker. VHDL and DOS share three important concepts: behavior (or dataf low),

time, and structure. In the next chapter, the relationship between VHDL and

DOS is defined in terms of an intermediate form called VHDL Intermediate

Access (VIA). The complete VIA specification is provided in Appendix B.

...-.

2.12



Ill. System Design

Overview.

Designing a system is the process of specifying system requirements,

translating those requirements into a functional system organization,

determining the external input, and establishing the desired output.

Therefore, four topics are discussed in this chapter- the language analyzer

system requirements, the language analyzer system organization, the VHDL

input subsets translated by progressive implementations of the system, and

the intermediate form output, called VHDL Intermediate Access (VIA).

System Requirements.

The environmental, functional, and performance requirements for the

language analyzer system are summarized as follows:

1. Embed the language analyzer in the UNIX environment.

2. Support a wide range of VHDL design tools.

3. Analyze the syntax and semantics of VHDL, Version 7.2

(Intermetrics, 1985a).

4. Emphasize user friendliness.

5. Facilitate ease of maintenance.

6. Process a 1000-1ine input file within three minutes of CPU time.

7. Analyze one input file per execution of the language analyzer.

8. Reduce output fIle size.
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For this project, code optimization was considered a non-important

requirement; rather, as discussed in Chapter 1, the emphasis for this project

was to produce a functionally correct prototype analyzer. Although good

software development techniques, such as structured design, information

hiding, and structured code, were applied to this project, the emphasis was on

building a functional initial prototype, rather than on performance.

The rationale behind these requirements is explained below.

1. Embed the lamguage analyzer in the UNIX environment. As mentioned In

Chapter 1, the language analyzer is the front-end processor for the prototype

AVE environment. Since AVE is designed to reside on the UNIX system, the

language analyzer by default must execute on the UNIX system.

2. Suooert a wide range of VHDL design tools. As mentioned in Chapter 1, at

the start of this project three AVE tools were identified to interface with

the language analyzer. Potentially other design tools will eventually be

designed to interface with the language analyzer. With an open-ended set of

AVE design tools, the language analyzer must be designed independent of any

specific tool and emphasize an interface for a wide range of tools.

3. Analyze the syntax and semantics of VHDL. Version 7.2 (Intermetrics,

1985a). As mentioned In Chapter 1, during 1986 the IEEE was establishing an

Industry-wide hardware description laguzge based on VHDL, Version 7.2. So

the draft IEEE standard was an alternative to using VHDL Version 7.2 as the

baseline for this project. Yet, this requirement would have increased the risk

associated with a successful completion of the analyzer due to fluctuating

baseline requirements. Therefore, VHDL Version 7.2 was identified as the
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baseline definition for this project.

4 Emphasize user friendliness. The analyzer Is intended to support

students In an academic environment. Therefore, the analyzer must be easy

to operate, support a meaningful 'helpo capability, provide clear concise error

messages, provide meaningful output, and execute within a reasonable period

of time.

5. Facilitate Ease of maintenance. As mentioned in Chapter 1, this project

was an incremental development effort. So, by necessity, the analyzer must

be easy to modify not only during initial development, but also during the

follow-on refinement to incorporate the changes to VHDL generated by the

* IEEE community.

6. Process a 1000 line Input ffie within three minutes of CPU time. As

discussed In Chapter 1, the prototype analyzer emphasizes function with

performance as a secondary goal. Nevertheless, a minimal acceptable

baseline was arbitrarily established by the author analysis of 1000 lines of

VHDL code within three CPU minutes.

7. Analyze one input f ile per execution of the lanuae analyzer. A more

useful analyzer would process multiple input f iles; yet, analysis of multiple

f Iles would necessitate developing a linker f or the associated output f Iles.

Since a linker was not def ined within the scope of this project, the number of

input files was limited to one. However, within that VHDL source file,

multiple design entities may be defined because VHDL requires multiple

design entity Interaction.
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8. Reduce output file size. Two conflicting constraints regulate the

optimization of the output file size: maximizing readability and minimizing

wasted space. Since tool builders read the files generated by the language

analyzer, the Information in the files must contain sufficient information to

Identify the contents. Yet, at the same time, unnecessary information should

be minimized so reduction of the output f ile size was established as a

requirement

System Organization.

Two potential design methodologies existed for deriving the system

organization: create a system design based upon the aforementioned

, requirements, or tailor an existing design to meet them. The f irst method

provided the advantages of performing a complete top-down system design. A

top-down system design would ensure all system requirements were

decomposed and efficiently translated into the end product. Yet, the first

method gave the distinct disadvantage of increased design time. As

mentioned In Chapter 1, three parallel projects were associated with this

project in the creation of the prototype AFRT VHDL Environment (AyE). The

success of the prototype AVE depended upon an early prototype language

analyzer. Therefore, the second method was used.

In addition to decreased design time, the second method provided the

following advantages:

1. Facilitated transfer of technolog. Transfer of technology was achieved

In three ways. First, the initial design was based upon a C compiler developed

by Schreiner and Friedman (Schreiner and Friedman, 1985). Their design was
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selected because the design and the code for the program modules were well

documented. Second, some design modification decisions were based upon

work done by Intermetrics while under contract to the Department of Defense

(Intermetrics, 1986c). Intermetrics specified the semantic actions for a

VHDL parser written In Ada. These semantic actions were modified for the

AFIT VHDL parser. Third, the intermediate form was based upon the Design

Data Structure (DDS) developed by D. W. Knapp and A. C. Parker at the

University of Southern California (Knapp and Parker, 1984). Using DDS as the

underlying structure for VHDL Intermediate Access (VIA) reduced the

research time required to specify the Intermediate form during the system

design phase.

, 2. Extensive use of comDuter aided design tools. As stated earlier, the

initial design was based upon Schreiner's and Friedman's work (Schreiner and

Friedman, 1985). They used two computer-aided design tools: LEX and YACC

LEX Is a lexical analyzer generator (Lesk and Schmidt, 1978), and MACC is a

parser generator (Johnson, 1978). Both LEX and YACC were available for use

while the author was developing the VHDL language analyzer. Both tools

facilitate information hiding; reduce development and maintenance time; and

generate C code. Therefore, in order to make use of C-based computer-aided

design tools, C was selected as the Implementation language.

The system organization which evolved is depicted in Figure 3.1. A main

driver program calls the parser. The parser checks the grammar calling the

lexical analyzer for tokens. When the parser needs information about a

literal, the parser calls the symbol table routines. Upon finding an error, the

parser calls the message handler routines. The lexical analyzer finds tokens
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I main

intesnutbfl an bases tH tok e kgothnpr eranthelxia

analyzer reads a literal, the literal is entered into the symbol table. Whien

the lexical analyzer reads an undefined sequence of characters, the message

handler prints an error.

As mentioned earlier, the basic design of the language analyzer was

derived from Schreiners and Friedmans work. Of the six modules depicted in

Figure 3. 1, two required no tailoring: main and message ad/er The

modifications to the other four are explained below:

Pjse Since Schreiner's and Friedman's parser recognized a subset of

%*& the C language, it was necessary to modify their parser to recognize VHDL.
As mentioned earlier, the parser is generated by YACC (Johnson, 1978) (see
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VHDL
specification

YACC

C code

parser

Figure 3.2: Parser Generation.

Figure 3.2). The VHDL specification contains production rules and semantic

actions which describe VHDL. These production rules are similar to the

grammar rules defined In the VHDL Language Reference Manual (lnterrnetrics,

1985a: C-I to C-20). The production rules essentially allow the parser to

analyze the syntax of the VHDL source code, while the actions analyze the

semantics.

Lexical Analyzer. Since Schreiner's and Friedman's lexical analyzer

recognized tokens for the C language, It was necessary to modify their lexical

analyzer to recognize VHDL tokens. As mentioned earlier, the lexical analyzer

is generated by LEX (Lesk and Schmidt, 1978) (see Figure 3.3). The token

specification contains VHDL token definitions and their classifications. The

token definitions are based upon the lexical elements defined in the VHDL
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token
specification

LEX

C code

lexical
analyzer

Figure 3.3: Lexical Analyzer Generation.0
Language Reference Manual (Intermetrics, 1985a: A-I to A- I I).

Symbol Table Processor Since Schreiner and Friedman designed their

symbol table for the C language, It was necessary to modify their symbol

table processor to process VHDL symbols. The symbol table processor Is a set

of functions which maintains a table of all Identifiers and literals. The

symbol table Is central to the correct operation of the language analyzer. The

symbol table processor not only maintains type Information, but also

maintains scope Information for all Identifiers/lIterals. Since the type and

scope Information required by Schreiner and Friedman was different for VHDL,

the symbol table concepts were modified as depicted In Figure 3.4.
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Schrelners and Friedman's symbol table was a simple IInked Ilist (stack)

of symbols, where the top of the stack contained local symbols (such as

variables) and the bottom of the stack contained global symbols. The

concepts of their symbol table were preserved; they are depicted in Figure 3.4

as the left-most linked list extending down the figure. In VHDL, design

entitles are made visible by the context clauses. Therefore, it was necessary

to modify Schreiners and Fri edman's symbol table to maintain information

about symbols which are not visible. The modification was accomplished by

moving design entities to a second linked list for design units. The design

entity linked list extends horizontally across Figure 3.4 When a context

clause is specifiled, the appropriate design units are linked into the global

region of the symbol table.

0To further complicate the Issue, VHDLs architectural bo dies and

configuration bodies can Inherit direct visibility from an Interface definition.

This, therefore, necessitated the preservation of the Information In the

context clauses by the linked lists labeled with and use in Figure 3.4.

CoeGneao Since Schreiners and Friedman's code generator

targeted the C language, It was necessary to modify their code generator to

create the VHDL Intermediate Access (VIA) format. The modifications made

to the code generator are explained In Chapter 4

Incremental System Implementation.

Recall, from Chapter 1, to implement the system described above an

Incremental development approach was chosen because three parallel
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development projects required early access to the intermediate information

generated by the language analyzer. The increments could have been chosen

either vertically (to completely design, code, and test the language analyzer

as three distinct tasks) or horizontally (to specify language subsets, each of

which would be designed, coded, and tested before beginning work on the next

subset). The horizontal VHDL subsets were chosen 1) to enable early

identification and resolution of potential problems; 2) to ensure correct

external interfaces for the AVE tools; 3) to establish correct internal

interfaces for the analyzer's modules; and 4) to reduce the complexity of the

project by limiting the scope of the probleffL

With this decision, the question of how to subset the language arose. As. defined by the Language Reference Manual (Intermetrics, 1985a: 1-4, 10-1),

VHDL has five major constructs or design entities: interfaces, packages,

sa*crograms, architecture bodies, and configuration bodies I nterf aces

primarily define the signals, ports and other resources which define the

external view of a hardware component. Packages primarily define the

existence of software types, procedures and functions which are used within

other subprograms and architecture bodies. Subprograms primarily define the

behavior of a hardware component. Architecture bodies primarily define the

structure of a hardware component. Within an architecture body, subprograms

are used to describe behavior when the level of a design requires a functional

description. Configuration bodies primarily define the interconnection of

ports between two distinct hardware components.

To reduce the complexity of implementing the language analyzer,

analyzer development was undertaken in subsets corresponding to VHDL's
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design entitles, context clauses, declarations, expressions, sequential

statements, concurrent statements, configurations, subprograms, and other

constructs. As subset were added to the language analyzer, each of the five

major language constructs received enhanced capabilities.

Desig Entites. The design entities subset addressed those features of

the language required to recognize the semantic shells for Interfaces,

packages, subprograms, architecture bodies and configuration bodies

(Intermetrics, 1 985a: 1- 1, 1-4 to 1-5, 2-1, 3- 1 ). This subset did not address

any optional semantic capabilities allowed in VHDL because they were

addressed by the next five subsets.

Context Clauses. The context clauses subset addressed those features of

the language required to establish the VHDL Inter-entity scoping rules

(Intermetrics, 1985a: 10-2). This subset did not address multiple input files

because multiple Input files were outside the scope of this project; but it did

address multiple design entities within a single file.

Declaration The declarations subset addresses all formal declarations

allowed within any VHDL design entity (Intermetrics, 1985a: 5-I). This

subset did not address the use of complex expressions to establish a

declaration. Only one expression was used, a simple name; the use of

complex expressions in declarations was addressed in the next subset. This

subset was selected due to the commonality of declarations across all design

entities, and because VHDL Is a strongly typed language.
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Ep o The expressions subset addressed those features of the

language required to capture and process the semantics of an expression

(Intermetrics, 1985a: 7-6 to 7-20). This subset did not establish the

semantic validity of concurrent or sequential statements (these concepts

were addressed in the next two subsets). The subset was chosen to complete

the declarations started in the previous subset.

Seauential Statements. The sequential statements subset addressed

those features of the language needed to describe the function or the behavior

of a hardware component (Intermetrics, 1985a: 8-i to 8-12). This subset did

not establish the validity of concurrent statements (see next subset). The

subset was chosen based on Its similarities to general-purpose programming

.languages with which the author was familiar.

Concurrent Statements. The concurrent statements subset addressed

those features of the language needed to describe the structure of a hardware

component (Intermetrics, 1985a: 8-12 to 8-26). This subset was chosen to

complete the architectural body capabilities.

ConfLuations. The configurations subset addressed those features of

the language needed to link architecture bodies with configuration bodies

(intermetrics, 1985a: 1-5). This subset was chosen to complete the

configuration body capabilities.

.ubprgcams The subprograms subset addressed those features of the
Alanguage needed to link subprograms to other subprograms, packages, and

architecture bodies (Intermetrics, 1985a: 2-1 to 2-4). The subset was chosen
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to complete the subprogram capabilities.

Other The other subset addressed features of the language which were
potentially omitted In the previous subsets. This subset was chosen to

complete the entire language capabilities. If a capability was known, but
Intentionally not addressed, then the deviation from VHDL Version 7.2 was

explained In Appendix A

Table 3.1 presents the capabilities projected for each of the f ive major

language constructs as each subset was added to the language. The Initial

subsets provided a firm foundation across the entire language. The logical

progression of capabilities across the language reduced the risk factors
* Involved with an Incremental development. These risk factors were 1)

Inaccurate or incomplete understanding of VHDL semantics; 2) reduced

probability of a good design solution due to narrow problem focus; 3)
Increased probability of code modifications due to design changes; and 4)
increased probability of repeating completed test analysis due to design and

code modifications. The selection of the subsets in a pyramid fashion

restricted these potential risks by narrowing the problem domain to either

the current or the previous subset.

Intermediate Form.

As discussed in Chapter 1, three potential intermediate forms could have

been useeC an original design, Intermedi ate VHDL Access Notation (IVAN), or

Design Data Structure (DDS). An original design would have extended the
initial design time by at least six weeks. The extra design time was
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Table 3.1: VHDL Subsets and Capabilities.

prohibited by the parallel AVE development efforts requiring the definition of

, the Intermediate form for their design cycle. Although both IVAN and DOS

were documented, IVAN assumed the existence of a design library manager.

Since the prototype AVE did not include or require a design library manager,

DOS was selected over IVAN.

An extension of DOS is the underlying structure for the Intermediate

form chosen. Both VHDL and DOS have constructs to hierarchically represent

behavior (or dataf low), time, and structure. VHDL and DOS basically represent

the same Information with respect to either behavior or structure. Yet, they

represent different timing information. To explain this difference, we shall

say that VHDL represents dynamic sequencing and oynmic sc/edu/inj time,

while DOS represents staticsequencing time. Dynamic sequencing is the

determination of the next state of a simulation model based upon the current

state during execution. Dynamic scheduling Is essentially the process of
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* specify-i which of the current states will affect future states of the

simulation model. With static sequencing all possible next states are
determined prior to execution of the model.

Due to these differences, DDS was extended to include the dynamic

sequencing and dynamic scheduling times. Additionally, DOS was explicitly

designed as an interface for LISP programs. As mentioned earlier, one

requirement for the AVE analyzer was to Interface with a wide range of

design tools. To achieve this requirement, the extension to DDS was designed

to be language Independent. This extension to DDS is called VM2

Intermediate Access ( V/A ) format

The VIA format is an alphanumeric pile f Ile (i.e., a file with sequential

, variable-length records) format which was developed with five underlying

constraints derived from the project requirements: an Incremental

development approach, consistency of representation, simplicity of
representation, ease of modification, and language Independence. For an

interf ace to be specified in increments, consistency of representation,
simplicity of representation, ease of modification, and language independence

become critical to the success of the project.

The full VIA format specification is provided in Appendix B; yet, a brief

description ,is given here. In typical usage, the analyzer creates a VIA f ile In

the user's present working directory. The file consists of one control record,
vfatab/e, followed by one or more VIA records. The format for all records is

the same:
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record-number record-type-name ( f ield-nare- I - field-value- I;...,

field-name-n - field-value-n ; )

Each record starts on a new line with a positive integer record-number. The

record-number of the control record is always zero. The record-number Is

followed by a space, then the record-type-name. The record-type-name

indicates the type of the record and establishes the valid field-names which

are used for that record type. Following the record-type-name Is a list of

field-names and field-values separated by semicolons and enclosed within

parentheses. Only those field-names which have an established value (which

is not a default value) are printed

Following the field-name Is the equal symbol, which indicates the field-

values will follow. Each field-name has one field-value followed by a

, semicolon. A semicolon followed by a closing parenthesis indicates the

record is complete. Any white space within a record is a delimiter, unless

the white space Is enclosed In quotation marks. White space Includes blanks,

tabs, new lines, etc.

Appendix B contains a complete list of record-type-names with their

associated field-names and field-value definitions; and Appendix C provides

several examples, one of which is depicted in Figure 3.5.

The interface declaration depicted in Figure 3.5 was selected as an

example based upon Its completeness and simplicity. The first block in the

figure represents a record with the record-type-name viatable The viatable

points to another record with the record-type-name component This

information is represented in the first VIA record just below the diagram.
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VHDL Source Code:

entity INTERFACE-NAME is
end;

Enhanced DOS:

vlate

name: INTERFACE NAME
complete bit: true

component operation bindings: null
dataflow model: null
timing model: null
structural model: null

VIA Representation:

0 vlatable ( component - I
I component ( name = INTERFACENAME ;)

Figure 3.5: VHDL Represented in VIA.
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Since the field-name is also a valid record-type-name, the field-value is

interpreted as a record number, in this case the number 1. Therefore, record

I is expected to be a component record.

The second block of the diagram points to no other blocks, but has six

attributes. Of these six attributes, only name contains Information which is

not default information. Therefore, the only field-name which appears in

record I is name. The other attributes which cont:in default information are

not printed in the VIA file. The default values are assumed for the

non-existing field-name in the VIA file.

This example, although simple, shows how the basic VIA format supports

the requirement to reduce output file size. The long record-type-name and

0long field-names, and the redundancy between the record-type-names and the

field-names render the file readable. Assuming the existence of default

values minimizes the size of the overall file.

Summary.

In this chapter, nine system requirements were established to emphasize

function as a primary goal and performance as a secondary goal for the

language analyzer design. These nine requirements were Incorporated into a

system organization which increased transfer of technology and the use of

computer-aided design tools. The basic design of the system was tailored

after a C compiler designed by Schreiner and Friedman. Their design coupled

with the use of computer-aided design tools facilitated the ease of

maintenance required for an the incremental development approach. The
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incremental development approach was further supported by the nine VHDL

~ language subsets chosen to provide a wide range of capabilities across the

entire language. The careful selection of subsets reduced four risk factors by

insuring the scope of potential problems or of design changes was limited to

either the current or the previous subset. Finally, the selection of VIA as an

extension of DDS reduced the design time required to specify an intermediate

data structure.
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IV. Detailed Design

Overview.

The analyzers system organization presented in Chapter 3 was designed

to allow an incremental implementation based upon nine VHDL language

subsets. The nine subsets were chosen to focus the problem domain into

manageable slices for which the solution domain could easily be determined.

Recall, from Chapter 1, after the subsets and intermediate form were

selected several subtasks were established for each subset. These subtasks

were:

I ) Create detailed examples showing the relationships between the VHDL

A -. e-.subset and the intermediate form;

2) Determine the appropriate design changes based upon those examples;-

3) Implement the design changes;

4) Test the code using the examples produced in step 1, and

5) Analyze the results to determine whether the solution domain in fact

satisfied not only the problem domain for the particular subset under

consideration, but also previous subsets completed.

The design decisions for steps 1, 2, and 3 are presented in this chapter,

while the analysis decisions for steps 4 and 5 are presented in Chapter 5.

Now, discussing nine subsets with at least three topics each would

overendow the reader with unwarranted details. Therefore, this chapter

presents the important information in four sections. the basic methodology

used for each subset, an example of the design work, the major design
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decisions, and the language analyzer's detailed design.

Basic Methodology.

The detailed design approach applied to each subset was to create

detailed examples, to determine appropriate design changes, and to implement

the design changes. Each of these steps is discussed below.

Create detailed examples. Creating detailed examples of the

VHDL-to-VIA relationship was the process of identifying that portion of

VHDL's grammar under consideration for a particular subset, writing

examples of VHDL source code, representing the VHDL code in the enhanced

O Design Data Structure (DDS) (Afsarmanesh and others, 1985), and translating

DDS to VIA. At the beginning of this project each of the above steps was

performed to assure consistency in representation and to create a firm

foundation on which to build later subsets. Further into the project,

translating the entire VHDL example into DDS became cumbersome and hard to

read; therefore, only that portion of VHDL under consideration was translated

into DDS. Appendix C contains examples which were the result of this step.

Determine the appropriate design changes. Based upon the examples

generated in the previous step, detailed design changes were derived.

Determining these design changes was a logical outgrowth of the first step,

in that the original examples implied a pair of specific functional

transformations, g and f f(x) was defined as the transformation from VHDL

to DOS where x was example VHDL source code, g(z) was defined as the
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transformation from DDS to VIA where z was example DDS representation,

and y = g(f(x)) was the example VIA.

The identification of these two separate transformations had two

significant consequences. First, it implied that the VIA file should be created

using two steps, rather than one. And second, this characterization implied

that a design translation could, in fact, be performed consistently

independent of the particular subset under consideration. As stated in

Chapter 3, the overall design of the language analyzer was based upon

Schreiners and Friedmans work (Schreiner and Friedman, 1985). Therefore,

in order to capitalize on technology transfer, the f irst transformation, f, was

defined as an extension of the basic concepts presented by Schreiner and

Friedman with respect to transforming semantic content of the source code

into a symbol table. Yet, if their concepts were preserved, then either a

transformation from the symbol table structure to a DDS structure was

required for VIA generation (or, alternatively, the VIA generator itself could

make that transformation). Traditionally, code generators do not modify

input, because they are procedures which print output based upon the input.

Yet, creating a third function to transform the symbol table structure into the

DDS directed acyclic graph would increase memory requirements and reduce

operational performance. Additionally, the above mathematical analysis

suggested only two transformations were required, not three. Therefore, for

the above reasons, the second technique was used, a technique which allowed

the code generator to transform input, print results, and return an indicator

of the result. Once established, this technique enabled the design of the

language analyzer to proceed smoothly from subset to subset.
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Implement the design changes. After each design increment was

determined, pseudocode was written, then the pseudocode was transformed

into the language C. Aside from being a good programming technique which

leads to structured code modules, the author chose to use pseudocode for two

reasons. First, at the beginning of this project (prior to developing the initial

pre-prototype parser) the author had never written C programs. Second, it

has been suggested that to learn a new language one must use what he/she

knows about other languages and transform this information into the syntax

of the target language (Drew, 1981 ). Therefore, it seemed reasonable to start

with pseudocode and transform the pseudocode into C code as a secondary

process. The pseudocode applied to this project was an informal technique,

and, as such, is not presented in this report.

Design Work Example.

As a detailed example of the type of design work associated with the

basic methodology, consider the design of the first subset, the Deslgn-File

Problem. The Design-File Problem was the problem of recognizing the

semantic shells for interfaces, packages, subprograms, architectural bodies

and configuration bodies within the design-entity subset. Recall, from

Chapter 3, each VHDL subset was selected to provide a wide range of

capabilities across the breadth of the language. Since VHDL has five principal

constructs, recognizing each of these constructs seemed the ideal first r

problem.
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Two options were available for the resolution of this problem: the f ive

major constructs could h~ave been designed either as individual constructs, or

as a group of constructs. Processing each construct separately provided the
advantage of an early understanding of how code generated by either YACC
interfaced with modules designed by the author, and the disadvantage of

potentially inconsistent VIA representations for the constructs. Processing

the five constructs in parallel provided the advantage of consistent VIA

representation and utilization of common functional modules, and the

disadvantage of a potentially incomplete understanding of the YACC interface.

Since neither method seemed to be ideal for all decomposition steps, a

mixture of the two was decided upon for this subset. The constructs were

considered in parallel for creating the detailed examples, and they were

, considered individually for the design and implementation steps. This

decision assured a consistent VIA representation, and through it the author

quickly learned techniques to interface with YACC.

As mentioned earlier, each of the subproblems needed to address three

steps in the design process: created detailed examples, determine the

appropriate design changes, and implement the design changes. The decisions

associated with these step are discussed next.

Create detailed examples. Creating detailed examples involved four

steps: identifying that portion of VHDLs grammar under consideration,

writing examples of VHDL source code, representing the VHDL examples in the

enhanced DDS, and translating DDS to VIA. The portion of VHDL's grammar

which applied to the f irst subset (as depicted in Figure 4.1 ) was not a
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1. entity INTERFACE-NAME is
000

end;

2. configuration CONFIGURATION-NAME
of ENTITY-NAME for ARCHITECTURELNAME is
*0O

end;

3. package PACKAGE-NAME is
*0O

end;

4. procedure PROCEDURE-NAME is
*O

begin
00

end;

5. function FUNCTIONNAME return ATYPE=NAME is
000

begin
90o

end;

6. architecture ARCHITECTURENAME of ENTITY-NAME is
000

end;

Figure 4. 1: Subset I -- the Design Entity Shells.

complete set with respect to VHDL's syntax. By comparing the contents of the

figure to VHDL's grammar (Intermetrics, 1985a: 1- 1, 1-4 to 1-5, 2- 1, 3- 1) one

VW can see that the interface, listed in item 1, and the configuration body, listed
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in item 2, are complete, but the other constructs are incomplete. Recall,

from Chapter 1, that a pre-prototype parser created prior to the start of this

project recognized all of VHDL's syntax. Therefore, although the semantic

analysis was limited to the subset under consideration, correct and

syntactically complete VHDL examples were created for use with this

pre-prototype parser. This decision proved useful, in that, the parser's design

was altered only by semantics from one subproblem to the next.

The set of examples which were generated for the Design-File Problem

are listed in Appendix C. Those examples visually reflect the decisions on

how to represent VHDL in the enhanced DDS and in turn in VIA. One example

will be discussed to explain the interpretation of those examples. The

configuration body example as reflected in Figure 4.2 was selected for

discussion for two reasons. First, the configuration body was one of the two

VHDL constructs for the design-entity subset, which was both syntactically

and semantically complete. Since the interface example was discussed in

Chapter 3, to avoid redundancy the configuration body was the logical choice.

Second, the configuration body was a simple, but non-trivial, example.

Figure 4.2 embodies three sources of information: the VHDL source code,

the enhanced DDS, and the VIA representation. Mathematically, the example

represents a dual transformation, g(f(VHDL)) = VIA. The VHDL source code

represents the input domain; the enhanced DDS represents the application of a

single transformation; and the VIA notation represents the output range. The

VHDL Language Reference Manual (Intermetrics, 1985a) explains the VHDL

source code, and the VIA notation was explained in Chapter 3. Accordingly,
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the following paragraph presents only a discussion of the transformation.

In the example, the VHDL source code used three identifiers, each of

which is represented in DOS. As stated in Chapter 2, DDS is principally

composed of models (or components) which have four subspaces: dataf low,

timing, structural, and physical. Therefore, each of the three VHDL

identifiers was mapped into either a component or one of its subspaces. Also

recall, from Chapter 2, a configuration is the design entity which describes a

chip's port connections for the ports specified in an interface declaration,

while the architectural body describes the structure and behavior of the chip.

In a complete VHDL source description of an electronic circuit, the identifier

INTERFACENAME would have an associated interface declaration, and the

* identifier ARCHITECTURELNAME would have an associated architectural body.

Since ARCHITECTURENAME implies that somewhere there exists (or will

exist) an architectural body which describes the characteristics of the

structure of the component, the identifier was mapped into the structure

subspace of VIA. Also, INTERFACE-NAME implies that somewhere there exists

(or will exist) an interface declaration which describes the ports of the

model; therefore, the identifier was mapped into DDS as a component model.

Furthermore, the concept of configuration implies that the electronic circuit

has more than one sub-part, otherwise there would be nothing to configure,

therefore, CONFIGURATION-NAME was also mapped into DDS as a component.

The tree in Figure 4.2 depicts these relationships.

Determine the appropriate design changes. At the beginninq of the

Design-File Problem, the approach explained in the earlier section, labeled
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"Basic Methodology", had not been completely formalized. At the time, the

principal concern for the initial design changes was centered around

formulating a better understanding of YACC's interface, rather than

identifying a well-founded design approach. The basic design approach used

was to transform the VHDL source file into the symbol table and from the

symbol table create the VIA file as the semantic content of the VHDL source

was derived. This was not a good approach, although traditional. The

approach led to code generation routines which were based upon the structure

of VHDL for generating the directed acyclic graphs represented in a VIA file,

rather than upon a more general class of code generation modules. Although

the author was aware the modules would eventually require changes, the

traditional approach was pursued to learn about the specific shortcomings

0 and to avoid incorporating them into a refined approach.

Implement the desion chanoes. The interface to YACC is not easily

readable. YACC requires partial C code segments to be inserted within the

YACC source file which describes the VHDL parser. YACC in turn generates a C

program for the parser using the C code segments. To increase the readability

of the C source file, procedure and function calls were used for the C code

segments (see Figure 4.3) rather than performing actions in line. Although

self-explanatory names were used, the actual names of the parameters

passed by YACC were less readable than desired. As Figure 4.3 shows, YACC

parameter names take the form of a dollar sign followed by a number, such as

$1 or $2. The name $1 means the result associated with the first

non-terminal (or terminal) of the current production, the name $2 implies the

second non-terminal, and so forth Also as shown in Figure 4.3, the C code
4.
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architectural.body-dec larat ion
ARCHITECTURE
Identifier(

make.arch( $2);
blk-i.pusho;)

OF
libraryname-or-id

process-visibility( $5, INTER);

Is
block-statement
ENDRW
optionsimple-name(

verifynames( $2, $ 10),

Semicolon(
architecturaLbody-declaration( $2, $5, $8);
delete-visibility( $5);
change-regions( $2);

I

Figure 4.3: An Example Parser Production for YACC

segments are inserted between two non-terminals, or between a non-terminal

and a terminal. Each time a set of C code segments is inserted into a

production, YACC generates a new empty non-terminal for that segment. This

implies when new C code segments are inserted the subsequent numbers

change, so the parameter numbers must also change. Therefore, to reduce

potential errors, with respect to proper numbering, modification of

productions should be kept to a minimum.
*. .'e
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In summary, completing the Design-File Problem not only provided the

analyzer with its first semantic capabilities but also influenced future

design decisions by:

I. establishing basic relationships between VHDL and VIA.

2. realizing that for any particular subproblem the principal focus is on a

specified subset of VHDL. These subsets must be viewed in the context of the

closely associated VHDL statements (such as the architectural bodies

association to the block statement.)

3. identifying the need for consistency in the design of code generation

routines.

4. acquiring a firm understanding of the YACC interface.

*ib Major Design Decisions.

The basic approach used for the Design-File Problem was applied to the

other subset problems which were completed. The incremental approach to

designing the language analyzer surfaced many design decisions. Since

defining each of these design decisions would once again overendow the

reader with details, a representative set of major design decisions is

presented. These decisions include:

1. Extend the design of the symbol table.

2. Create VIA generation routines based upon attributes.

3. Establish parser interfaces for all subsets.

4. Create and use abstract data types.

Each of these decisions is described in the following paraqraphs.
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Extend the design of the symbol table. Although Schreiner's and

Friedmans symbol table was useful for the Design-File Problem, their simple

symbol table did not support the various VHDL symbol types or scope

requirements. As discussed in Chapter 3, Schreiner's and Friedman's symbol

table was extended to support direct, indirect, and inherited visibility. The

symbol table was also extended to support VHDL type and subtype definitions,

all variables, signals, and literals (i.e., decimal-]literals, based-literals,

abstract-lIi terals, character-strings, and bit-strings). As new symbol

characteristics were discovered, new fields were added to the symbol table.

Since the language analyzer is a prototype, the symbol tables' data structure

was not optimized because, as stated in Chapter 1, this thesis project

emphasized function, with performance as a secondary goal.

Create VIA generation routines based upon attributes. In solving the

Design-File Problem, the symbol table was used to store directed acyclic

graph (DAG) information which is represented by the VIA records. As the

research progressed, the author realized that although the symbol table

stores VIA information which directly relates to a symbol (i.e., name,

descriptive characteristics and record location), the vertices in the symbol

tables' linked lists do not correspond one-to-one to the vertices in the VIA

DAG. Many VIA records are printed without a name, yet only those records

with names could be represented in the symbol table. Additionally, most

attributes in a VIA record are pointers to other VIA records. Therefore, the

data type attrbute, a linked list representing partial DAGs, was created and

used by the VIA generation routines.
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Establish parser interfaces for all subsets. The implementation

transition from the Context-Clause Problem to the Declarations Problem

required interfaces for the new parser actions. When these interfaces were

added to the parser, YACC did not produce an error-free parser. Upon

investigation, some declaration grammar rules were used by expressions.

Since expressions were targeted for a later subset, the impact of the

interfaces on the expressions subset was not considered during the design of

the Declarations Problem. To resolve this interface problem (and future

problems of a similar nature) the YACC VHDL source description file was

changed to include stubbed interfaces for every production in the source

description. Stubbed interfaces are function calls to functions which have

names identical to the production names. These functions, when initially

written, included one parameter for each production data item available,

printed a "production not implemented" statement, and returned a null value.

These stubbed interfaces not only allowed YACC to produce an error-free

parser, but also reduced future changes to YACC's VHDL description, and

thereby reduced overall development time.

Create and use abstract data types. The term abstract data type is

defined (e.g., Fairley, 1985: 96) as a data structure and its associated

operators (i.e., functions and procedures). By creating and using abstract

data types with their associated operators, the implementation details of the

data structures are separated from the implementation details of the program

flow and thereby facilitate information hiding principles. Three abstract

data types.were defined: symbol table, attribute table, and group Each of

these abstract data types is defined in the next section.
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Language Analyzer Detailed Design.

The dataf low diagram for the language analyzer which evolved during the

design process is depicted in Figure 4.4. This dataf low diagram presents six

high-level data transformations. get tokens, find next state, process actions,

process symbol table, process attribute table, and build groups.

Get Tokens. Get tokens is the process of lexical analysis by which LEX

(Lesk and Schmidt, 1978) identifies tokens (such as keywords, identifiers,

literals, punctuation marks and operator symbols) from a VHDL source code

file. These tokens are in turn used for two other processes (find next state

| and process symbols) which will be described later. The basic get token

process consists of scanning the input file (one character at a time) to match

the longest pattern which describes a token. The pattern for a keyword token

is a proper subpattern of the pattern for an identifier token; therefore, these

are selectively differentiated by a binary table lookup process. The token is

compared to the entries ir a reserved word table containing a complete list of

VHDL keywords. When the token is found in the table, the token is considered

a keyword, otherwise, it is assumed to be an identifier. All tokens are passed

to the find next state task, while only identifiers and literals are passed to

the process symbols task.

Find Next State. Findnext state is the parsing process by which YACC

(Johnson, 1978) determines the next production state based upon the current
production state and the token received from the g7et toA-en task This
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VHDL

vali m find
en next
tokemstate

identifiers amd stte &
constants auction

symbol
prcss atibtsprocess sybl build

moactions

L able aattributeo Process table

- Data flow VIA files
slce File

Figure 4.4: High-level Dataf low Diagram of the Language Analyzer.

process is automatically generated by YACC based upon a set of VHDL

productions which are similar to the grammar rules listed in the VHDL

Language Reference Manual (gntermetrics, 1g85a). Associated with each
t eand a set of actions which are executed upon

production frapoutionnm
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recognition of the production. Upon recognizing a particular production, the

current state information (e.g., identifiers used in the production, and

keywords like STATIC, ATOMIC and so forth) is passed to the process actions

task for appropriate resolution of the action.

Process Actions. Processactions is a conglomerate task with multiple

subtasks. Each subtask has a unique name which corresponds to one

production name in the findnext state process. Each subtask performs a set

of actions based upon the production specifications in the VHDL Language

Reference Manual (Intermetrics, 1985a). These actions are primarily control

actions which monitor the symbol table processing and attribute table

processing, yet occasionally these actions group together symbol table and

, attribute table information. The symbol table is an abstract data type used to

maintain characteristics of identifiers and literais, while the attribute table

is an abstract data type used to maintain characteristics of a directed

acyclic graph (DAG) represented by the VIA records. Both abstract data types

are discussed in the next two sections.

Process Symbol Table. Process symbol table is a set of tasks

associated with maintaining the abstract data type symbol table. The symbol

table consists of two different objects (symbols and vislinks) and three

classes of operations (constructors, mutators, and observers) Each VHDL

identifier and literal (i.e., constants, strings and so forth) is assigned to a

unique symbol. Additionally, any identifier used in a VHDL context clause is

assigned to a unique vislink, which defines the scope of a symbol's external

visibility. These symbols and vislinks are linked together as described in
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Chapter 3. Each symbol contains characteristics which describe how the

symbol is used in VHDL, how the symbol is linked into the symbol table, and

how the symbol was used in VIA. The information associated with the VHDL

usage consists of characteristics such as name, type (i.e., ARCH, CONF, PORT,

51G, VAR), value (i.e., values associated with VHDL type definitions, and

constants), variable type, signal type, and so forth. The information

associated with the symbol table linkage consists of characteristics such as

next symbol, last symbol, next design entity (i.e., any symbol derived from an

architecture, configuration, package, interface, or subprogram name), last

design entity, use links (i.e., symbols which were declared in a VHDL use

clause), with links (i.e., symbols which were declared in a VHDL with c/ause)

and so forth. The information associated with the VIA usage consists of

Q characteristics such as complete-bit (i.e., a flag indicating a symbol was

completely defined), static (i.e., a flag indicating a static signal), duration

(i.e., an indicator showing how long a signal is available), and so forth.

All of these characteristics are manipulated by a set of operations

consisting of constructors, mutators and observers (Fairley, 1985: 98).

Constructors are those operations which create the symbols or visl inks, such

as &screate which creates a symbol. Mutators are those operations which

alter the contents of symbols or vislinks, such as removevislMk which

removes a particular vislink. Finally, observers are those operations which

retrieve information from the symbol table without modification, such as

s.find which finds a particular symbol.

.p4.1
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Process Attribute. Process attribute table is a set of tasks associated

with maintaining the abstract data type attribute table and with generating

the attributes associated with the VIA DAG. The attribute table consists of

one object, called an attribute, and the same three classes of operations

associated with the symbol table. As depicted in Figure 4.5, the attribute

table is a simple linked list. Each attribute contains a pointer to the next

attribute, a record type identification, and a record number. The record type

identification and the record number are integers which represent the

record- type-name and the record-numrber for the VIA record which was

printed when the attribute was created.

The attribute table is essentially an ordered linked list with the most

* recently printed VIA record at the front of the list. VIA records are printed

in a hierarchical order, with the lowest level printed first. At the time VIA

records are printed the attributes are entered into the attribute table. They

are preserved in the attribute table until all other VIA records which

reference them are printed. For example, when a sngle.value record is

printed, an attribute is entered into the attribute table. This attribute is

maintained in the attribute table until both a dataf/ow.model record and a

dataflow_/mk record are printed and their respective attributes are entered

into the attribute table. At that time, the attribute for the original

single-value record is no longer required and is therefore removed.

Additionally, when a VIA record is printed with the field-name name, the

symbol table routine updatewhere enters the record number into the symbol

table. This allow VIA records which are associated with a VHDL identifier or

constant to be referenced after the attribute has been removed from the

4.19
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type -- the type of record printed
num -- the number of the record

next-- the next attribute in the list

type num next

LEGEND [type num next
LTT Attribute jN ULL

-* Pointer

Figure 4.5: Attribute Abstract Data Type.

attribute list.

B GJrous. Buildgroups is the process of associating a specific

symbol table entry and attribute table entry together. YACC allows only one

data type per production. Yet the actions for particular productions require

the information from both the symbol table and the attribute table. To avoid

the use of global variables, and to preserve the definition of an abstract data

type during implementation, a third abstract data type called a group was

developed. The group data type is a simple one node data type which contains

a pointer to a symbol table entry and a pointer to an attribute table entry as

depicted in Figure 46 The group data type's sole purpose is to fulfill YACC's

one-data-type-per-production requirement. Therefore, the Duildgroup

process consists of the operations which can be performed upon the data type

4.20
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0
group

symolattrib 
-ute

Figure 4.6: Group Abstract Data Type.

group: create a group, delete a group, get a symbol table pointer, and get an

attribute table pointer. Create.group allocates memory for the abstract data

type and updates the associated pointers. Free_.group frees memory.

6etsymbo/ retrieves the groups symbol table pointer, while qeLattrbute

retrieves the attribute table pointer.

Summary.

This chapter discussed the basic methodology for three of the five

remaining subtasks discussed in Chapter 1. These subtasks were to create

detailed examples, to determine design changes bases upon those detailed

examples, and to implement the design changes. The design work associated

with the Design-File Problem was discussed to explain the types of design
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* decisions associated with the three subtasks. The solution to the Design-File

Problem recognized the semantic shells for .VHDLs architecture bodies,

configuration bodies, packages, interfaces, and subprograms, and produced the

VIA records describing those constructs. The completion of the Design-File

Problem influenced future design decisions by establishing the degree of

complexity associated with determining VHDL-to-VIA relationships and with

implementing those relationships.

Af ter discussing the Design-F ile Problem, this chapter described several

fundamental design decisions derived from processing other VHDL subsets

were discussed. Extend the design of the symbol table and create VIA

generation routine were among these decisions. The design of the basic

* software modules for processing the symbol table, processing the attribute

table, and building groups were discussed. These software modules, coupled

with established interfaces for each parser action, provide a firm foundation

for continued design work. The next chapter discusses testing of these

software modules. The test results demonstrate that the modules work as

designed, and therefore reduce future testing complexity.
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V. Analysis

Overview.

The language analyzers detailed design, as presented in Chapter 4, was

selected to fulfill the eight system requirements listed in Chapter 3. These

system requirements were 1) to embed the language analyzer in the UNIX

environment; 2) to support a wide range of VHDL design tools, 3) to analyze

the syntax and semantics of VHOL; 4) to emphasize user friendliness; 5) to *

facilitate ease of maintenance; 6) to process a 1 000-line input flie within

three minutes of CPU time; 7) to analyze one input f ile per execution of the

language analyzer; and 8) to reduce output flie size. To assure these system
* requirements were fulfilled, individual test requirements were derived to

verify the design Implementation. Based upon the test requirements, specific

tests were selected and performed. This chapter presents the test

requirements and examples of particular tests with their associated results.

Test Requirements.

The language analyzers design implementation was to be considered

correct and complete when the language analyzer successfully satisfied the

following test requirements:

1. Analyze a representative sample of arbitrary VHDL source code f iles.

2. Analyze a single 1000-l1ine VHDL source code f ile w Ithin three CPU

minutes on a VAX-class machine.

3. Create valid VIA file contents for representative sample sets.
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4. Produce valid error and warning messages for representative sample

sets.

5. Operate within the UNIX environment.

One other test requirement was considered, but not Included: the requirement

to interface with other VHDL tools in the AVE. As mentioned in Chapter 1,

four VHDL tools (a VHDL code checker, a microcode compiler, a software

simulator, and a simulator generator) were scheduled to be developed in

parallel with the language analyzer. Of these four tools, the microcode

compiler, the software simulator, and the simulator generator were designed

In parallel; yet, their implementations were delayed enough that testing of

the actual interface could not be accomplished within the schedule of this

project. Therefore, Interfacing was not Included as a requirement for the

prototype language analyzer.

Each selected test requirement is discussed below.

1. Analyze a reoresentative samole of arbitrary VHDL source code files.

The ability to analyze an arbitrary VHDL source code file partially fulfills

three system requirements: to embed the language analyzer in the UNIX

environment, to emphasize user friendliness, and to analyze one input file per

execution of the language analyzer. UNIX software products are generally

allowed to receive Input from any arbitrary file or group of files. Although

for the purposes of this project the language analyzer was restricted to one

Input file, allowing this to be an arbitrary file was consistent with UNIX

conventions, and, therefore, presumably user friendly. In particular, the user

5.2
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Is not required to learn new techniques for handl ing input f Iles.

2. Analyze a single 1000-l ine VHDL source code ftile within threeCU

minutes on a VAX-class machine. The analysis of a single 1 000-line VHDL

source code flie within three CPU minutes was directly stated as a system

requirement. As indicated in Chapter 1, this requirement was established to

provide a minimal acceptable performance baseline for the prototype language

analyzer.

3. Create valid VIA file contents for representative sample sets. The

requirement to create valid VIA f Ile contents was derived from two system

requirements: to support a wide range of VHDL design tools; and to analyze

, the syntax and semantics of VHDL. The VIA f ile generated by the analysis of

the syntax and semantics of VHDL must be correct as specified in Appendix B.

4. Produce valid error and warning messages for representative sample

=. Producing valid messages is a test requirement derived from three

system requirements: to analyze the syntax and semantics of VHDL, to

emphasize user friendliness, and to facilitate ease of maintenance. If input

file contents are incorrect, then specific, concise error or warning messages

are generated by the language analyzer.

5. Operate within the UNIX environment. This test requirement follows

directly from the system requirement to embed the language analyzer in the

UNIX environment. In addition to following UNIX input conventions (discussed

earlier), the language analyzer fulfills this requirement by permitting
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multiple users to simultaneously execute the analyzer.

Method of Evaluation.

According to Fairley (Fairley, 1985: 184-185), four classes of tests

should be performed on any software product: functional, performance, stress,
and structural tests. Functional tests verify post-conditions based upon a

selected set of pre-conditions (i.e., Including conditions *Inside, on, and just

beyond the functional boundaries" (Fairley, 1985: 271). Performance tests

verify particular interactions of the software product with its environiment.

Stress tests attempt to overload a system and its environment in order to

establish operational limits and failure reasons. Finally, structural tests

* verify internal program logic, assuring each logical path within the code

functions correctly. Of these four classes of tests, formal test cases were

established for functional and performance tests. Test cases for stress and

structural tests were not formally specified for the reasons discussed below.

Fucioaltest. For the reasons discussed in Chapter 1, functional

testing was given the highest priority among the various test classes. Prior

to designing program modules for each subproblem (see Chapter 4), a

representative set of functional test cases was developed. For each test

case, VHDL source code was written and expected results were predicted for

comparison with analyzer output. Two kinds of test cases were developed:

single and multiple grammar rule tests. The single grammar rule test cases

contained VHDL source code to demonstrate one particular aspect of the VHDL

~ grammar subset under consideration. By limiting test Input to exhibit one
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*grammar rule, the expected results were more easily verified. With the

multiple grammar rule test cases, various combinations of the grammar rules

were created to assure the results were not affected by second-order effects.

By selecting test cases in this manner, the grammar rules from a previous

subset could be used In the test cases for a current subset with a degree of

confidence that the expected results from the previous subset would be

stable. The test cases making up this representative sample set appear in

Appendix C.

Performance tests. For the reasons discussed in Chapter 1, performance

testing was given a low priority, although formal test cases were selected to

demonstrate the prototype language analyzer performance characteristics.

~ The original design goal projected the analyzer would execute a

representative 1000-line VHDL source code in less than three CPU minutes on

a VAX class machine. Since the prototype language analyzer processes only a

portion of the VHDL language, test were created to determine the performance

based upon the implemented subsets. These tests consisted of analyzing the

VHDL source code files under normal operating conditions of the AFIT host

UNIX environment. Run time data for ten test iterations of four sets of VHDL

code was gathered and statistically evaluated to determine the mean

execution time and standard deviation. Based upon these results, projections

for the completed prototype language analyzer are presented.

Stress. 5~t tress testing was given a low priority in order to
minimize the level of -ef fort associated with testing the language analyzer
within a fixed length of development time. (As stated in Chapter 1, the
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primary emphasis of this research endeavor was to establish a functionally

correct prototype language analyzer with performance, including stress

performance, as a secondary consideration.) To establish that the language

analyzer would not fail in an operational environment, however, students of

two AFIT Computer Architecture classes were assigned homework which

required developing VHDL source descriptions which were processed by the

language analyzer. This Informal testing provided stress test coverage

adequate for the purposes of this project.

5trtual tsts Structural testing was given a low priority for two

reasons. First, structural tests are designed to test a program's logic paths,

thereby assuring each statement operates as intended. In most cases, the

4I~ same result can be derived during functional testing, given that the inputs for

the functional tests are carefully selected to achieve this goal. Second, the

language analyzer is a prototype. As a prototype, the language analyzers code

is subject to change as the development progresses. Therefore, provided the

language analyzer passes the functional tests (which demonstrates working

code), the potential time spent on performing structural tests could be used

for continued design work, although some modules were selected for

structural testing based upon the complexity of the module and upon how

frequently the module was used by other program modules. For instance, the

attribute modules which processed VIA attributes and wrote VIA records

were structurally tested because approximately 75 percent of the action

modules call the attribute modules.
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Once a program module passed a structural test, the module was

considered correct, and that module was used to test other program modules.

Such a bottom-up approach to structural testing allowed composite program

modules to be tested without physically modifying them or writing additional

test routines.

Evaluation of the VHDL Language Analyzer.

The evaluation of the language analyzer consisted of the four classes of

tests previously mentioned. The description of the test, the test conditions,

and an evaluation of the test results are presented below for the tests in each

class.

Functional tests A representative set of functional test cases was

created to verify that the language analyzer was consistent with the language

reference manual (Intermetrics, 1985a). The functional test cases were

similar in format, varying only with the exact input and expected output.

Therefore, one specific example will be discussed, although the other tests

appear in Appendix C. The particular example selected for discussion is

depicted in Figure 5.1, "A Single Grammar Rule Test'. For this test, the VHDL

source code displayed at the top of the figure was the Input data, while the

VIA representation at the bottom of the figure was the expected result. To

perform the test, the command

vhdl test-proc_ I

was issued from the UNIX command line. vhdl is the name of the executable

•2. file for the language analyzer, and tesLoroz/_ is the file containing the
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VHDL Source Code:

parocedure PROCEDURE-NAME is

Enhanced DDS:

____________comp onent:

Dpackape: NULL
undefined: NULL
roote NULL

viatable _________

name: PROCEDURE-NAME
complete-bit: false
operationaLbinding: NULL
dataflow...model: NULL

component tming-..model: NULL
structuraLmodel: NULL
instantiate..and-merge: NULL
extends: NULL

VIA Representation:

0 via-.table ( component = 1I
I component ( name - PROCEDURE-NAME - complete-bit - false,

Figure 5.1: Procedure Test Case.
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VHDL code displayed in Figure 5.1. The test creates three files ( viata/e,

v;4ack, and v/atemp), which when concatenated together, create the via.vhdl

file discussed in Appendix B. The contents of the files were manually

compared to the expected results as shown in the figure. In this case, the

test results were exactly as depicted in Figure 5.1.

With some tests, however, the expected results varied from the actual

results in one of three acceptable ways. First, the specific record numbers

assigned to each record in the actual results might differ from those assigned

in the expected results. Since record number assignments are arbitrary,

provided the specific record numbers were unique, the test was deemed

successful. Similarly, the order in which the records appeared was deemed

* insignificant, provided the record numbers were unique Third, the actual

results might reflect the contents of the expected results in more than one

actual record through the use of the extenWF attribute The extends attribute

links two records together a Itr-wt'";c1 can be any V IA reco

type) and an exteni" Icord (which is a record of the same type as the primary

record) The extend record points to the primary record though the extend

attribute Basically, the extend record is a continuation (or extension) of the

primary rec.)rd Therefore, the test was considered successful provided the

union of the information in the actual results mapped into the contents of the

expected results

Performance tests Four sets of VHDL code were analyzed ten times by

the language analyzer These tests were performed under normal operating

condition of the AFIT UNIX environment To perform these tests a UNIX shell
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was written to repetitively execute the statement

time vhdl <filename>

The command time Is a UNIX utility which reports elapsed time, user

execution time, and system time (AT&T, 1986); hdWl is the name of the

executable file for the language analyzer; and flename is the name of the

file containing the VHDL source code. Table 5.1 reflects the raw data

gathered from these tests, and Table 5.2 reflects the mean and standard

deviation for the execution times. As the work progressed on the language

analyzer, the mezn execution time Increased from 0.64 to 1.03 CPU seconds.

Both the execution times and the output file sizes grew rapidly, because the

third subset was the largest subset Implemented. The first subset, the

Design-File problem, processed six production rules (i.e., definitions YACC

. uses to create the parser); the second subset, the Context-File problem,

processed approximately 20 production rules; and the third subset, the

Declarations Problem, processed approximately 65 production rules. With

these first three subsets very few of the production rules were shared. Those

production rules which were used by more than one subset, were simple

productions like.

simple-name - Identifier,

whereas the third subset made a major contribution to future subset

implementation. The third subset processed approximately one third of the

246 productions used by YACC. Since the third subset language analyzer

performs over one-third of the expected total translation work, such a radical

increase In time and file sizes is justified. The original performance

projection for the completed language analyzer was to process a 1000-1ine

VHDL source file within three CPU minutes. Although the test cases did not
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Test Input Subset Number

Number File Size 0 1 2 3 0 1 2 3
User Time Output File Size

(bytes/lines) (sends) (bytes)

A 1 2207/96 0.3 0.3 0.4 0.7 0 637 637 13532
2 0.3 0.3 0.4 0.7
3 0.3 0.3 0.4 0.7
4 0.3 0.3 0.3 0.7
5 0.4 0.3 0.3 0.7
6 0.3 0.4 0.3 0.7
7 0.3 0.3 0.4 0.7
8 0.3 0.4 0.4 0.7
9 0.3 0.4 0.3 0.7
10 0.3 0.3 0.4 0.8
B 1 7978/293 1.4 1.4 1.4 2.1 0 1212 1208 18555
2 1.5 1.3 1.5 2.1
3 1.5 1.4 1.4 2.0
4 1.2 1.4 1.5 2.1
5 1.5 1.4 1.5 2.0
6 1.5 1.4 1.4 2.1
7 1.4 1.4 1.4 2.0
8 1.5 1.4 1.4 2.0
9 1.5 1.5 1.4 2.2

10 1.5 1.5 1.4 2.1
C 1 3244/106 0.5 0.4 0.5 0.8 0 363 363 7542

2 0.4 0.5 0.5 0.7
3 0.4 0.5 0.5 0.7
4 0.5 0.5 0.5 0.7
5 0.5 0.5 0.5 0.7
6 0.4 0.3 0.5 0.7
7 0.4 0.5 0.5 0.7
8 0.4 0.4 0.5 0.8
9 0.5 0.4 0.5 0.8
10 0.4 0.5 0.5 0,7

D 1 2392/83 0.4 0.4 0.4 0.6 0 311 311 7501
2 0.4 0.4 0.4 0.6
3 0.4 0.4 0.4 0.6
4 0.3 0.4 0.4 0.6
5 0.3 0.4 0.3 0.6
6 0.3 0.3 0.4 0.6
7 0.4 0.4 0.4 0.6
8 0.4 0.4 0.4 0.6
9 0.3 0.4 0.3 0.6
10 0.4 0.4 0.4 0.6

Table 5. 1: Performance Test Raw Data
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Test Subset Number
Number 0 1 2 3 0 1 2 3

Mewn Uur Time Standard Deviation

A 0.31 0.33 0.36 0.70 0.03 0.05 0.05 0.00
B 1.45 1.41 1.43 2.07 0.09 0.05 0.05 0.06
C 0.44 0.46 0.50 0.73 0.05 0.07 0.00 0.05
D 0.36 0.39 0.38 0.60 0.05 0.03 0.04 0.00

0.64 0.65 0.67 1.03 0.47 0.45 0.45 0.61

Table 5.2: Execution Time Means and Standard Deviations

conform to this criterion, the potential for the final prototype language

analyzer to meet or exceed this criterion is good.

*tes tet As stated earlier, stress tests were Informal, and

theref ore, specific test cases were not created. Rather, two AFIT Hardware

Architecture classes were assigned homework which required the students to

write VHDL descriptions of various hardware configurations. During the

winter quarter of 1986, students were assigned the task of describing a

hardware system's port interconnections using configuration bodies (George,

1986). At the time of the assignment, the pre-prototype language analyzer

was made available for student usage on the AFIT host UNIX system. The

students were told the language analyzer processed VHDL syntax while

ignoring VHDLs semantics. They were asked to report any problems which

they discovered. All problems they found were attributed to learning a new

language, and no problems associated with the language analyzer were

_04 mreported. The author had the opportunity to review selected examples of the
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students' code. Of the examples, few would have passed the semantic checks

implemented in later releases of the analyzer.

During the summer quarter of 1986, students were assigned the task of

describing the behavior of a Reduced Instruction Set Processor (RISC) they

were designing as a class project (Lindermnan, 1986). This time the students

used a release of the language analyzer which recognized VHDL- the semantic

shells. Once again no problems were reported. Yet this class assignment

tested a different set of VHDL syntax and the analyzers Initial semantic

capabilities.

Stutrltss As discussed earlier, structural tests were created for. complex or critical program modules. One such group of program modules was

the attribute modules which generate VIA Basically, a program driver was

written to test the attribute program modules, then the driver was executed

using data which was selected to test every program statement. Most

* attribute program modules have two inputs (a symbol table pointer and an

attribute table pointer). These programs call the symbol table routines to

retrieve information from the symbol table which Is printed during the

creation of new VIA records. Also, these programs print the relationship of

the new record to the partial directed acyclic graph (DAG) represented by the

attribute table; then the new relationship Is posted to the DAG.

The structural tests showed the modules worked correctly with one

consistent exception. When both Input parameters were null, the attribute

kk programs printed nullI records (i.e., records which had no f ield names and no
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field values). These null records were printed because the statement which

checked this condition had been improperly formed.

Summary.

This chapter presented the specific test requirements, test methodoloqy,

representative test cases, and an evaluation of the test results Four classes

of tests were presented: functional, performance, stress, and structural Of

these four classes of tests, the functional and performance tests were

primarily used for the analysis. The emphasis was placed upon functional

testing throughout the Incremental development, because the prototype

analyzer's first objective was function as discussed in Chapter I. The. performance test showed that the language analyzer was processing an

averaqe of 4000 bytes (or 145 lines) of VHDL code In 1.03 CPU minutes. Since

the language analyzer Is currently processing over one-third of VHDL

productions, the final prototype language analyzer can be expected to meet

the Initial performance objective of 1000 lines of VHDL code within three

CPU minutes.

5.,1

5.14



V1. Conclusions

Overview.

During this research, several conclusions were derived which not only

apply to VHDL Version 7.2 (the version of VHDL for which the language

analyzer was created), but also can be applied to the IEEE's enhanced VHDL

described in Chapter 1. This chapter summarizes those conclusions and,

based upon the conclusions, recommends six topics for future research

endeavors.

Principal Conclusions.

*j The research approach stated in Chapter I called for the selection of a

VHDL Intermediate Assess (VIA) format, selection of VHDL subsets,

Identificati(mi of logical relationships between VIA and VHDL, design of the

lquaqe analyzer, and evaluation of the language analyzer. The latter three

steps were applied Iteratively on each subset throughout the project

development cycle. Although in general this was a successful approach, minor

setbacks were associated with the successes. These successes and setbacks

are discussed in the following paragraphs.

I. Selection of VIA for the AFIT VHDL Environment. Selecting a structure

for the intermediate files was the process of analyzing the VHDL language to

determine a method for representing the content of a VHDL source program.

As explained in chapter 3, Design Data Structure (DDS) as presented by Knapp

and Parker of the University of Southern California (Knapp and Parker, 1984:
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9-27) was selected as the basis for the underlying structure of the VIA

format

One reason for the selection of DOS was to allow the tools under parallel

development to have early access to complete circuit descriptions. However,

since the VIA definition was on the critical paths of the parallel projects, the

scope of those projects was changed, so that the critical path did not depend

upon the VIA definition. Nevertheless, VIA was considered for making the

tool builders' respective design decisions.

2. Selection of the VHDL Subsets. Selection of the VHDL subsets to

Implement was the process of classifying the language rules into groups of

related rules. The rule subsets were ranked in the order of expected

Implementation complexity. As each rule set was added to the analyzer, the

analyzers capabilities expanded. Computer code was designed and tested to

validate the expanded capabilities.

This method of selecting subsets of the VHDL language was a success.

It allowed early access to the intermediate files and enabled ARIT students to

test the early analyzer releases as part of their normal homework

assignments. In assuring that the early releases functioned properly, these

students also gained a better understanding of both VHDL and the software

verif ication process.

3. Ientficaionof te Lgica Reatioshi BeteenVIA nd HDL

3.Identification of the logical relationshi between VIA and VHDL.ws h
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process of determining how the semantics of the language are explicitly

represented in the intermediate form. The language subsets were iteratively

decomposed to provide examples of VHDL source code and the intermediate

form. The examples served as a guide for designing modules and formed the

test cases used for validation.

Although this task initially seemed relatively simple, as the design work

progressed the task became complex and consumed more time than originally

projected. The complexity of the task increased as more capabilities were

added to the language analyzer, because VHDL and DDS have inherent

differences which cause inconsistencies in the way they handle structure and

behavior. For Instance, VHDL's types can be assigned values through an

,initialize directive. DOS does not provide a consistent means of representing

these Initialize values for types, because VHDL's types are equivalent to

DDS's dataflow /ink records, which cannot acquire values. Dataflowilink

records can point to single..valw records, but the single-value records were

used to represent the values associated with VHDL's type declarations (i.e.,

enumeration types and so forth). This inconsistency, like many others, was

corrected by adding another field to the VIA file definition, and therefore,

VIA is based upon enhanced DOS.

Due to similar complexities, the task of defining the logical

VHDL-to-VIA relations required more time than originally expected. The task

is still ongoing and is expected to continue as the prototype language analyzer

expands into a production version based upon the IEEE's standardized VHDL.
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*4. Design Modules to Generate the Intermediate Structure. Designing

modules to generate the intermediate structure was an iterative process of

determining the actions required for generating the intermediate f Iles.

Modules were designed to meet the semantic criteria specified in the VHDL_

Language Reference Manual (interrnetrics, 1 985a), to interface with YACC

(Lesk and Schmidt, 1978), and to Interface with a modified version of the

Schreiners and Friedmans symbol table (Schreiner and Friedman, 1985).

The design process in conjunction with the previous two steps required

more time than was originally projected. Therefore, the scope of the project

was re-evaluated. The goal of Implementing all nine subsets within this

project was changed to implementing three subsets. Although the goal

* changed, the incremental development methodology was a success. By

developing the design in increments, the author was able to design and

implement a set of robust program modules based upon abstract data types.

These abstract data types are a set of data structures (i.e., symbol table,

attribute table, and groups) with their corresponding operators (i.e., functions

and procedures). The abstract data types allowed information hiding by

separating low-level program details from high-level functional details and

provided a large variety of functions and programs for implementing future

VHDL subset capabilities.

5. Test and Evaluate the Language Analyzer. Testing and evaluating the

language analyzer was the process of executing the VHDL language analyzer,

checking the results against the predicted results, verifying the expected

output, and determining run time performance. Four classes of tests were
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performed: functional, performance, stress, and structural. Of these four

classes, functional testing was emphasized, because the project goals

emphasized function with performance as a secondary consideration. The

performance tests indicated that as the development of the language analyzer

continues the prototype analyzer should meet the projected goal of processing

a 1000-1ine input file within three CPU minutes. Performance tests also

showed that the output files are 2 to 6 times larger than the input files, and

therefore, the record-names and field-names in the file should probably be

shortened.

Suggestions for Future Research.

The current configuration of the VLSI tools at AFIT is an independent

collection of automated tools which were developed at 4FIT, acquired from

other institutions, or purchased from industry. Among these tools are

applications such as SPICE (Vladimirescu and others, 1983) (a gate circuit

simulator), CAESAR (Ousterhout, 1983) (an interactive mask layout tool),

/IEXTRA (Fitzpatrick, 1983) (a circuit extractor), L RA (Arnold, 1986) (a

design rule checker), and many more. Although some of the tools such as

CAESAR and LYRA communicate though a common data format, many of them

require manual translation from one fixed format to another. This

man-in-the-loop" is notorious for making costly mistakes which are

propagated through chip fabrication and discovered during chip testing. By

removing the man-in-the-loop, whenever feasible, and by adding additional

design tools to the AFIT VLSI design environment, many costly mistakes could

be eliminated.
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The AVE is potentially the kernel of an integrated VLSI design

environment that would automate or make unnecessary such manual

translations. This is so because VHIDL Is not only a simulation language, but

also a hardware description language which can be used throughout the design

cycle (from concept through testing). Also, the AVE must be highly integrated

to become useful for training VLSI students and for developing VLSI chips.

Currently, AVE is just another independent set of design tools 0.e, the

language analyzer, the software simulator, etc.) Yet, given sufficient

research time, the AVE could achieve full internal integration and

applications (such as CAESAR and SPICE) could be integrated into AVE though

VHDL. To achieve this result, the following research topics should be pursued.

1. Create a database manager with an associated database query language

2. Integrate CAESAR and SPICE Into AVE.

3. Optimize the language analyzers design and code.

4. Create a inker for the language analyzer.

5. Create an automatic VHDL code generator.

6. Create an automatic floor planner.

Each of these research topics is discussed below.

I. Create a Database Managr with an Associated Database Query Language.

A database manager with an associated database query language for the AVE
environment would potentially solve two problems. First, a database manager

would provide a means of controllIIng design f iles. Although the emphasis on

such a database manager would be to control VHDL and VIA f iles, a secondary

goal would be to support other files, such as CAESAR and SPICE files. Second,

a database query language would eliminate the need for each tool in the AVE
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to contain routines for traversing VIA's directed acyclic graph (DAG).

Although VIA was selected as an intermediate form because of its simple

abstract subspaces, traversing the VIA DAG Is a semi-complicated process

which should be transparent to most tools. Additionally, the author

speculates that many tools will not require information from all VIA

subspaces, yet, without a database query language, the tools may be required

to traverse the entire graph to acquire Information from one particular

subspace.

2. Integrate CAESAR and SPICE Into AVE. integriting CAESAR and SPICE

into AVE through VIA would remove the "man-in-the-loop" discussed earlier

In current practice, VHDL simulation models are developed independently from

SPICE's gate simulations and CAESAR's mask layouts. These products and/or

applications describe different aspects of the same chip circuitry under

development. In some cases, they even describe the same information from

different perspective. For example, CAESAR specifies the coordinates 'A

various mask levels; from these coordinates, the lenqth and widti "

transistors formed by the mask levels can be determined SPICE Jm,',' "

length and width of transistors to perform qate-level simulat ,,'

deriving timing diagrams. The system requirements, su(r, 3 c

component hierarchy requirements, for a chip can te w. -

Although each of these applications require data ir a ,Dp

common data structure such as VIA were used a ar..

automated tools could be developed (I) to tr ., ,i',

VHDL to the timing aspects of SPICE.,

of VHDL (such as hierarchy) to the r.v, ,
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* translate the physical aspects of CAESAR to the timing aspects In SPICE.
Admittedly, these translations are not simple and they may require human

Intervention In the form of on-line Interactive sessions. Yet, even an on-line

interactive session would reduce the potential of errors In omission,

calculation, or transcription.

The current conf iguration of VIA supports dataf low, timing, and
structure descriptions. Although the VIA does not currently support physical

descriptions, the extension of VIA to Include physical descriptions Is easily

accomplished by defining and adding the VIA record formats to describe the
Design Data Structure (DDS) physical subspace. With respect to VHDL, there
exists a direct correlation between the structural subspace and the physical

* subspace, so modifying the language analyzer to acknowledge the physical

subspace would be relatively simple. Once the VIA physical subtspace records
were defined, tools could be written to translate the timing subspace to a

SPICE shell and to translate the physical subspace to a CAESAR shell. SPICE
and CAESAR require Information not provided In VHDL. Therefore, to ensure
that VIA contains complete descriptions, tools could be written to extract
Information from SPICE and CAESAR to store In VIA. The combination of
tools would ensure that all known Information on a given design was stored in
one location, which would simplify the verification and validation process.

3. Optimize the Langage Analyzers Design and Code. As mentioned in
Chapter 1, the primary goal of this research endeavor was to produce a

functionally correct prototype language analyzer. Since this goal was
~ accomplished, a logical continuation would be to optimize the performance of
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O the prototype analyzer. Three principal research goals could be (1) reduce the

actual execution time from analyzing a single 1000-word source description

In three CPU minutes on a VAX-class machine to 30 CPU seconds or less; (2)

expand the language analyzer to allow multiple input files to be specified In

the command line; and (3) expand the language analyzer to create multiple

output files which correspond by name to the multiple input files. The

optimization or near-optimization of the language analyzer would create a

product which AFIT could be prouder to distribute among other universities.

4. Create a Linker for the Language Analyzer. A linker for the AVE

environment is required to logically connect VIA files which were analyzed

separately. The actual tasks associated with the linker would be similar to

* any other language linker' with the exception that the linker would be working

with VIA files rather than machine language files. The linker would need to

perform the instantiate-and-merge actions, related to the VIA files, which

are described in Appendix B. Although the language analyzer currently

requires an entire description in one file, the linker coupled with the

previously discussed language analyzer enhancements would render a more

usable language analyzer for the AVE.

5. Create an automatic VHDL code generator. The authors favorite

recommendation for future research is an automated VHDL code generator.

Like Ada, much of the code written for VHDL is to support user-defined data

abstractions (i.e., data types and associated operations which can be

performed using objects of those data types) and user-defined system design

S hierarchy. The nature of both data abstractions and design hierarchy renders
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them potentially good applications for graphical definitions. Ideally, the VLSI
designer would draw pictures (using rudimentary shapes such as boxes,
triangle, circles, ovals, arrows, lines, labels, etc. selected from a menu), then

these pictorial definitions would be translated into basic VHDL shells in

which the designer would Insert f Inal program logic such as assignment

statements. The specific information in these shells would vary among

designs, but basically the structural Information (such as that found in

architectural bodies, conf iguration bodies, component instantiations, type

definitions, and subprogram declarations) could be generated using the

graphical Information. The graphical Information coupled with the VHDL

source description would create the design documentation. Therefore, by
drawing pictures (which the designer would most likely do anyway) on a

* screen, the designer would reduce the time needed to formulate design

documentation and to write VHDL source descriptions.

6. Create an automatic floor planner. VHDL (and therefore VIA) contains

sufficient hierarchy information to facilitate an automatic floor planner.

The basic hierarchical structure of a VHDL source description could be used

(at any phase of the design process) to evaluate and to create the basic f loor
plan for the chip under development. With auxiliary information such as size
limitations, an automatic. floor planner could heuristically generate a CAESAR

file based upon the information maintained in the associated VIA file. The

CAESAR file would contain basic cell definitions with no actual layer

definitions. The automatic floor planner coupled with the automatic code

generator would provide a complete set of source documentation for the

Or Initial design reviews.
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Summary.

Although continued work on the language analyzer Is required to

encompass the entire VHDL language, the current prototype has already been

used for teaching APIT students about VHDL. The language analyzer Is the

first known C-based Implementation which operates in a UNIX environment.

Since the analyzer provides basic capabilities (such as the lexical analyzer,
parser, symbol table, message handler and so forth), several organizations

have already requested the source code from which they plan to build

production models. Therefore, this research project provided the f irst step

toward Integrating the ART VLSI design environment and also design

environments at other institutions. As integration work continues, ART
, students and faculty can provide valuable recommendations to the IEEE

community as the IEEE enters the acceptance stage of standardizing VHDL_ as

an industry-wide hardware description language.
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Appendix A. Deviations from the VHDL LRM.

This appendix discusses the December 1986 language analyzer

Implementation with respect to deviations from the VHDL Language Reference

Manual (LRM) (Intermetrics, 1985a). The prototype language analyzer's

capabilities cover approximately one-third of the language as defined In the

LRM. Therefore, to reduce redundant discussion, this appendix has been

organized to follow the LRM chapters. When functions listed in chapters or

major sections of the LRM were not implemented, the chapter/section

reference Is provided along with the projected VHOL subset to which the

reference was scheduled. When the capabilities were partially implemented,

the appropriate justification is provided.

Chapter 1. Desio Entities

Implemented except for port lists. These are scheduled for the next

subset, expresslon&

Chapter 2. Suborograms.

Implemented except for parameter lists. These are scheduled for the

next subset, eipressions

Chaoter 3. Packages.

Implemented

Chaoter 4 Types.

Implemented except for secondary-unit-declarations. They are

~ scheduled for the expressions subset.
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*~~~~~~~~~~~~ 'P P. U *v -' = j . % %



* Chapter 5. Declarations.

Implemented except for Interface lists and port lists which are

scheduled for the next subset, expressions

Chapter 6. Soecifications and Directives.

Implemented except for association lists and directives which are

scheduled for the expresslonssubset.

Chapter 7. Names and Exoressions.

Not Implemented. Scheduled for the subset titled eApressions The

only names Implemented thus far are simple and indexed names.

eChapter 8. Statements.

Not Implemented. Scheduled for the subsets titled seqrntia/

statements and conaurent statements

Chaoter 9. Scooe and Visibility,

Implemented.

COater 10. Design Units and Their Analysts.

Implemented with three exceptions: revisions specifications are

ignored; the package stadad Is a library unit; and design entities are

analyzed in any order. These three aspects of VHDL are examples of

Implementation dependencies recorded in the LRM which are required to

support the design library and the design library manager. The AFIT VHDL

; Environment has no design library or its manager; therefore, these

A.2
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requirements were ignored for the prototype language analyzer. Additionally,

Ignoring the order of analysis requirement made a more flexible design

environment

Apoendix A. Lexical Elements.

Implemented with two exceptions: reserved words must be lowerI

case, and identifiers are case-sensitive. According to an LRM note, win some

attributes the identifier that appears after the apostrophe is identical to

some reserved words (Intermetrics, 1985a: A- 10). To Implement this

capability either identifiers and reserved word needed to be case-sensitive or

syntax error recovery was required. Since case-sensitivity was the easiest

to implement, the author chose to differentiate the reserved words from

* Identifiers by using lower-case reserved words and case-sensitive

identifiers.

Anmendix B. Predefined Languag2 Environment.

.IPredefined Attributes.

Not implemented. Scheduled for the subset titled concirrent

statements

B. I Predefined Types and Subtvoes,

Implemented

Amoendix C. Syntax Summary.

Implemented without error recovery. Error recovery is a

desirable quality for a production model language analyzer, yet for the

x-v prototype language analyzer the author felt the time should be spent on
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, implementing other aspects of the language analyzer. Additionally, according

to the LRM, "If any error is detected while attempting to analyze a design

unit, then the attempted analysis is rejected..." (Intermetrics, 1985a: 10-3).

Appendix D. Glossary.

Not applicable. The glossary contains definitions.
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Appendix B: VIA

Overview.

To assist in the creation of future AFIT VHDL Environment (AVE) design

tools, the VHDL Intermediate Access (VIA) file format is completely defined

in this appendix. The file format is explained without justification of the

rationale behind the decisions which led to the development of the VIA file

structure: the reader interested in this rationale should see Chapters 1 though

4 of the thesis. Supporting examples are provided in Appendix C.

This appendix presents four categories of information: an overview of

* the VIA file structure, the component structure, the viatable structure, and

detailed record definitions.

Overview of the VIA File Structure.

The VIA file structure is an alphanumeric pile format. The file consists

of one control record, the viatable, followed by one or more VIA records. The

format for all records is the same:

record-number record-type-name ( field-name-I = field-value-i I

field-name-n = field-value-n - )

Each record starts on a new line with a positive integer record-number. The

record-number of the control record is always zero. The record-number is

indicates the type of the record and establishes the valid field-names for
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that record type. Following the record-type-name is a list of field-names and

field-values separated by semicolons and enclosed within parentheses. Only

those field-names are printed which have an established value that is not a

default value.

The equal symbol follows the field-name and a field-value follows the

equal symbol. Each field-name has at most one field-value. The field-value

is followed by a semicolon. A semicolon followed by a closing parenthesis

indicates the record is complete. Any white space within a record is a

delimiter, unless the white space is enclosed in either single or double

quotation marks. White space includes blanks, tabs, new lines, and so forth.

S The Component Structure.

The graph in Figure B. I represents the overall structure of the basic DAG

associated with an enhanced DDS component. The graph is composed of

labeled boxes, arrows, and labeled ovals. Each box in the graph represents a

record in the VIA notation with the label inside the box being the

record-type-name. Associated with each box are attributes which acquire

values (see next section for valid attributes). In VIA notation the attributes

are called field-names and the acquired values are called field-values. The

boxes are interconnected by thin and wide arrows. These arrows imply

relationships between the source (parent) and destination (child) boxes. The

parent has an attribute whose value is the relationship. In VIA these

relationships are represented by record numbers. A relationship implies two
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concepts: the child is actually part of the parent definition and the child

inherits the attributes of the parent. A thin arrow implies the attribute will

occur at most once, and a wide arrow implies the attribute can occur zero or
more times. If an attribute of a parent has multiple relationships with a

child, then a separate VIA record is created for each relationship. Although

children inherit attributes from the parent, they do not inherit attributes

from siblings (a parallel child). The arrow leading to labeled ovals represents

a relationship with another component in exactly the same context.

The definition of each box with its associated attributes is discussed in

the section labeled "Detailed Record Definitions", but first the structure of

the viatable is presented.

The VIATABLE Structure.

As mentioned earlier, the viatable is the control record for the VIA file

(see Figure B.2). In a VIA file, the viatable has the same structure as other

records. As a control record, the viatable provides essential information for

identifying top-level component records, package records, undefined symbol

records, and a root record. Top-level component records are those component

records which are derived from VHDL's architecture bodies, configuration

bodies, and independent subprograms; package records are derived from

VHDL's package declarations; undefined symbol records are derived from VHDL

identifiers which were not declared; and the root record is the loqical top of

the DOS directed acyclic graph (DAG). With this information, design tools in

the AVE can link between files and instantiate multiple copies of the
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I
0I viatable root

component undefined package

1Figure B.2: VIATABLE Structure

enhanced DDS directed acyclic graph (DAG). To minimize memory

requirements, only one DAG is created for any one VHDL construct. Yet, in

many cases, VHDL requires Instantiating copies of a particular VHDL design

entity (Intermetrics, 1985a). Within the AVE, design tools have the

responsibility for this Instantiation. The necessary Information required to

Instantiate copies of a particular DDS DAG (a secondary DAG) Is embedded as I
InstantIate-andmerge fields In that DAG (a primary DAG) which needs the

copies. The instantiate- and-merge field provides the record number for the

logical top of the secondary DAG. A unique copy of all records subordinate to

the indicated record must be created, then the secondary DAG must be merged
,.,O, Into the primary DAG. This merger Implies two types of actions must occur.

First, if both the primary and secondary DAGs begin with component records,
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then a new component record must be created to represent the union of the

two DAGs. The complete union includes merging the dataflow-model,

timing-model, and structuraLmodel records of the two component records to

form new dataflow-model, timinqgmodel and structuraLmodel records.

Second, all records which point to the original copy of the secondary DAG

must be changed to point to the newly created DAG.

Any file which, in terms of DDS, describes a complete VHDL source

description of an electronic component will have a field-name called root,.

The value associated with root is the record number of the component record

which is the logical top of the entire DDS DAG. The root may instantiate any

other component in the viatable, but it will never itself be instantiated in the

e resident file.

The linking between files and instantiation applies not only to the

components which describe hardware but also to components which describe

functions and procedures and to packages. The components which describe

functions and procedures are handled exactly as previously described. Yet, to

handle of components within a package, a linker or a design tool would need to

know which components were within which package. Therefore, the record

type package was created. The record type package contains a list of DDS

components described in a VHDL package. Even this handles only half the

problem; therefore, the record type undefined was created to describe

undefined identifiers. The undefined record defines the context of an

1. If a linker is eventually created for AVE, then the linker has the responsibility of removing all

but one root from the multiple files.
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O identifier which was used but not defined in a VHDL source description. When

possible it also explains where the definition is expected to be found. For

instance, it may state the identifier definition should be defined in a package

and give the package name.

Detailed Record Definitions.

Each record which can appear in a VIA file is defined in this section.

Each definition is composed of a record diagram, a record definition, and

attribute definitions. The diagram shows the record-type-name inscribed in a

box with a list of attributes extending to the right of the box. These

attributes are the exact field-names which will appear in a VIA file. The

*attribute definitions explain the valid content of the field-values. At the risk

of being redundant, each attribute for each record is defined with that record

because the attribute definitions vary slightly among the various records.
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# 1. compnen~t Record:

______________name

complete-.bi t
operatLon-binding
dataf low..model

component timjng.model
struct-uraLmodel
instant iate-and-merge

Figure B.3. component Record.

Record Definition: The cmponn record is the top level record which

explains the construction of a hardware or a software entity. The attributes

point to the subspaces which describe the component through lower level

subspace definitions.

Attribute Def initions:

a. name is the name of the component.

Syntax: any valid VHDL identifier.

Occurs. at most once.

Default: NULL.
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Ib. complte-bit indicates whether or not the VHDL description of the

component is complete. The complete-bit attribute will appear in the

component record whenever the description is not complete. Otherwise, the

description is assumed to be complete.

Syntax: true or false.

Occurs: at most once.

Default: true.

c. structuralmodel is a record number for the structural-model record

which describes the structural subspace of the component record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

d. .timng.odej is a record number for the timing-model record which

describes the timing subspace of the component record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

e. dataflow-model is a record number for the dataflow-model record

which describes the dataf low subspace of the component record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.
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f. oDerational-binding is a record number for an operational-binding record

which describes a specific carrier-range-value or module-range-node

relationship for the component record.

Syntax: positive integer or NULL.

Occurs: zero or more times.

Default: NULL.

g. instantiate-and-merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

h. extends is a record number for a previously printed record. Any record

which contains an extends attribute is a continuation record. The information

listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.
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2. dataflow-link Record:

name
complete-bit
has-structural-dlmens Ion
has-sub] InLconstituent

dataf low instantlate-and-merpe
link extends

Figure B.4: dataflow-link Record.

Record Definition: The dtlow-ink record characterizes the shared

value dependencies between (1) a value and a node of the same component, and

(2) values of two different components.

Attribute Definitions:

a. name Is the name of the dataf low-] ink.

Syntax: any valid VHDL identifier.

Occurs: at most once.

Default: NULL.

b. complete-bit indicates whether or not the description of the

dataflow-]ink is complete. The complete-bit attribute will appear in the

B. II
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dataflow.link record when the description is not complete. Otherwise, the

description is assumed to be complete.

Syntax: true or false.

Occurs: at most once.

Default: true.

c. has-structural-dimension is an integer indicating the size of the

dataf low-] ink.

Syntax: positive integer.

Occurs: at most once.

Default. 0.

d. has-sublinLkconstituent contains a record number for a single-value

record which describes a value associated with a dataflow-link.

Syntax: positive integer or NULL.

Occurs: zero or more times.

Default: NULL.

e. instantiate-and-merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.
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f. extends is a record number for a previously printed record. Any record

which contains an extends attribute is a continuation record. The information

listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

3. dataflow-model Record:

name
complete-bit

* function
has..structura ldi mension

dataf low has.link-constituent
model hasmodelconstituent

i nstint iateandmerge
extendq

Figure B.5: dataflow-model Record.

Record Definition: The dataflow-model record is one of three subspace

records; it characterizes the behavior of a component. The dataflow-model

has two types of attributes which are explained at a lower level in the

hierarchy- nodes and values. Nodes represent a functional transformation,

B. 13

i{ , .',? .',,, ' . .- .. , . . . . . . . . . . . . . . . ..



*while values represent the initial conditions and/or the results of a

functional transformation.

Attribute Definitions:

a. Dame is the name of the dataflow-model.

Syntax: any valid VHDL identifier.

Occurs: at most once.

Default: NULL.

b. c indicates whether or not the description of the

dataflowmodel is complete. The complete-bit attribute will appear in the

dataflowmodel record when the description is not complete. Otherwise, the

description is assumed to be complete.

Syntax: true or false.

Occurs: at most once.

Default: true.

c. function indicates the purpose of the dataflow-model.

Syntax: character string.

Occurs: at most once.

Default NULL.

d. hasstructural-dimension is an integer indicating the size of the

dataflow-model.

Syntax: positive integer.

Occurs: at most once.
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Default: 0.

e. has-link-constituent contains a record number for a single-value record

which describe a value associated with the dataflow-model.

Syntax: positive integer or NULL.

Occurs: zero or more times.

Default: NULL.

f. has-model-constituent contains a record number for a single-node

record which describes a node associated with the dataflow-model.

Syntax: positive integer or NULL.

Occurs. zero or more times.

Default: NULL.

g instantiate-and-merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax positive integer or NULL.

Occurs at most once.

Defau". NULL.

h extends is a record number for a previously printed record. Any record

which contains an extends attribute is a continuation record. The information

listed in such a record actually belongs to the record referenced by the

extends attribute.
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Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

4. dataflow-net Record:

subvalue-path
visibility-bit
dataf low-connect ion

datafI ow instant tate-an-merge
extends

net

Figure B.6: dataflow-net Record.

Record Definition: The dataflow-net record binds together values of two

different component.

Attribute Definitions:

a. subyalue-.ath is a record number for the record which describes one

aspect of a lower level decomposition of the single-value record which is the

parent of the dataflownet record.

Syntax: positive integer or NULL.

B. 16
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* Occurs: at most once.

Default: NULL.

b. vi defines whether or not the values can be accessed by a

record in another subspace.

Syntax: true or false.

Occurs: at most once.

Default: false.

c. dataflow-connection contains a record number for a dataflow.pin record

which describes the interconnections for the dataf low network.

Syntax: positive integer or NULL.

* Occurs: zero or more times.

Default: NULL.

d. instantiate-and-merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax. positive integer or NULL.

Occurs at most once.

Default. NULL.

e. extends is a record number for a previously printed record. Any record

whicb contains an extends attribute is a continuation record. The information

listed in suc,) a record actually belongs to the record referenced by the

B. 17
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'extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

5. dataflow-pin Record:

subvalue.path
single-node
instantiate and merge
extend

dataf Iow ____

pin

0 _ __ _ __ _

Figure B.7: dataflow.pin Record.

Record Definition: The dataflow-pin record binds together a value and a

node of the same component.

Attribute Definitions:

a. subvaluenath is a record number for the single-value record which is

connected to the single-node.

Syntax: positive integer or NULL
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1% r*~ **Y~i *i 5 *E~ i

*, ,' ,, . .. P. . . , . . , . _ . . . . . . , . . ....... .. ... .5



8Occurs: at most once.

Default: NULL.

b. sjngln contains a record number for the singlenode record which

is connected to the single-value record listed in the subvaluepath attribute.

Syntax: positive integer or NULL.
Occurs: zero or more times.
Default: NULL.

c. instantiate-anLfmerge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

d. extends is a record number for a previously printed record. Any record

which contains an extends attribute is a continuation record. The information

listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.
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6. oWerational-bindin Record:

______________ dataf 1low-p..ath
structural-path
rangg path

operaional kind-of diataf low-path
oprinal kinCLnf structural path

bininginstanot ite aand -merge
Axtendq

Figure 5.8:- Operational Binding Record.

Record Definition: "operational..bindinU [records) show the relationship

between an operation (or value), a structure, and a time interval"

(Afsarmanesh and others, 1985:31 ). Operational-..binding records actually

point to carrier-value-.range and module-..node...range bindings discussed by
Af sarmanesh and others.

Attribute Def initions:

a. dataf Iow...Dath i s a record number f or e ither a s inglIe-valIue or

single-nJode record. The specific record type is identified by the

kind-..o-dataf low-..path attribute.

Syntax positive integer or NULL

Occurs: once.
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*Default: NULL.

b. structural-path is a record number for either a single-carrier or

single-module record. The specific record type is identified by the

kind-of.structuralpath attribute.

Syntax: positive integer or NULL.

Occurs: once.

Default: NULL.

c. range-path is a record number for a single-range record.

Syntax: positive integer or NULL.

Occurs: once.

*d Default: NULL.

d kind-of-dataflowoath represents the type of the dataf low path.

Syntax: node or value.

Occurs: once.

Default. no default.

e. kindclof-structural-oath represents the type of the structure path.

Syntax. module or carrier.

Occurs- once.

Default. no default.

f. instantiate-andnmerge is a record number for the logical top of a

previously printed DAG (i e, a group of related records) The current record
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AM needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

g. exed is a record number for a previously printed record. Any record

which contains an extends attribute is a continuation record. The information

listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax. positive integer or NULL.

Occurs: at most once.

Default: NULL.

7. pacage Record:

_____________ name

component
dataflow-link

package

Figure B.9: Package Record.
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Record Definition: The package record defines all lower level components

and dataflow-links which were specified within a VHDL package.

Attribute Definitions:

a. name is the name of the package.

Syntax: any valid VHDL package name.

Occurs: once.

Default: no default; all VHDL packages have names.

b. component is a record number for a component record.

* Syntax: positive integer or NULL.

Occurs: zero or more times.

Default: NULL.

c. dataf low.ink is a record number for a dataflow-Iink record.

Syntax: positive integer or NULL.

Occurs: zero or more times.

Default. NULL.
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8. single-carrier Record:

name
role
has-kind
structural-netl ist

single instantiate-an.-merge
carrier extends

Figure B.10: Single-Carrier Record.

Record Definition: The single-carrier record characterizes the path for the

results of a functional transformation.

Attribute Definitions:

a. name is the name of the single-carrier.

Syntax: any valid VHDL identifier.

Occurs: at most once.

Default: NULL.

b. role is an integer which represents the reference number for VHDL

arrays.

Syntax: integer or NULL
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* Occurs: at most once.

Default. NULL.

c. has-ind contains a record number for a structural- ink record which is

described by a different component record (Afsarmanesh and others, 1985.

42).

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

d. structural-netlist contains a record number for a structural-net record

which describes the network for the single-carrier

5 Syntax: positive integer or NULL.

Occurs: zero or more times.

Default. NULL.

e. instantate-and-merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records) The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax: positive integer or NULL.

Occurs. at most once.

Default. NULL.

f extends is a record number for a previously printed record Any record

which contains an extends attribute is a continuation record The information
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listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax: positive integer or NULL.

Occurs. at most once.

Default. NULL.

9. single-model Record:

name
haslkind
intended..funct ion
instanti ate-and-merge

single extends* m odule ____

'

'

Figure B. 11 Single-Jodule Record.

Record Definition: The single-module record characterizes a location for

which a functional transformation occurs

Attribute Definitions:

a name is the name of the single-module

Syntax any valid VHDL identifier
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Occurs. at most once.

Default. NULL.

b. hasind contains a record number for a structural-model record which

is described by a different component record (Afsarmanesh and others, 1985:
42).

Syntax. positive integer or NULL.

Occurs. at most once.

Default. NULL.

c. intended-function signifies the function performed "in the target design

as opposed to the function . as an isolated entity" (Afsarmanesh and others,

1985 42).

Syntax. character string.

Occurs. at most once.

Default. NULL.

d instantiate-andmerae is a record number for the logical top of a

previously printed DAG (i.e, a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax: positive integer or NULL.

Occurs. at most once.

Default. NULL.

e extends is a record number for a previously printed record Any record I
B. 27
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which contains an extends attribute is a continuation record. The information

listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

10. single-node Record:

name
has-kind
intendedf unction
instant late-and-merge

single extends
node

Figure B.12: Single-Node Record.

Record Definition: The single-node record characterizes a functional

transformation of a component's dataf low subspace.

Attribute Definitions:

a. name is the name of the single-node.
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Syntax: any valid VHDL function name, procedure name, attribute name,

or operator.

Occurs: once.

Default: no default.

b. has-kind contains a record number for a dataflowrnodel record which is

described by a different component record (Afsarmanesh and others, 1985:42).

Syntax: positive integer or NULL

Occurs: at most once.

Default: NULL.

c. intended-function signifies the function performed "in the target design

as opposed to the function ... as an isolated entity" (Afsarmanesh and others,

011985: 42).

Syntax: character string or NULL.

Occurs: at most once.

Default: NULL.

d. instantiate-and-merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax: positive integer or NULL.

Occurs. at most once.

Default. NULL.
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e. extends is a record number for a previously printed record. Any record

which contains an extends attribute is a continuation record. The information

listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

11. single-ont Record:

name
role
sink
source

single subscript
point visibility bit

hask i nd
inst@ntiate and merge
_etends

Figure B. 13: Single-Point Record.

Record Definition: The single__point record characterizes the a specific

time an event or a functional transformation occurs.

Attribute Definitions:
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a name is the name of the single-point.

Syntax. any valid VHDL identifier.

Occurs. at most once.

Default. NULL.

b. role indicates the relative position of the single-..point with respect to

the start of a single-..range.

Syntax: integer.

Occurs: at most once.

Default: zero.

c. sink is a record number for the last single-rsange record which describes

* the connectivity of the timing diagram.

Syntax: positive integer or NULL.

Occurs: zero or more times.

Default. NULL.

d. sorc is a record number for the first single-range record which

describes the connectivity of the timing diagram.

Syntax. positive integer or NULL.

Occurs. zero or more times.

Default. NULL.

e. susrp is an number representing a specific iteration of a loop.

Syntax, positive integer or NULL.

Occurs. at most once.
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Default. NULL

f. visibility-bit defines whether or not the single-point record can be seen

directly.

Syntax: true or false

Occurs: at most once.

Default: false.

q. has-kind contains a record number for a timing-link record which is

described by a different component record (Afsarmanesh and others, 1985:

42).

Syntax: positive integer or NULL.

Occurs: at most once.

Default. NULL.

h. instantiateand._merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax. positive integer or NULL.

Occurs: at most once.

Default: NULL.

i. extends is a record number for a previously printed record. Any record

which contains an extends attribute is a continuation record The information

listed in such a record actually belongs to the record referenced by the

B.32



extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

12. single-rang Record:

name
predicate
has._.k nd
asynchronous-predicate

single Instant iate.and..merqe
range extends

Figure B. 14: Single-Range Record.

Record Definition: The single-range record characterizes a timing range of

a component's timing subspace.
I

Attribute Definitions:

a. name is the name of the single-range.

Syntax: any valid VHDL identifier.

Occurs: at most once.
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Default: NULL.

b. "predicates describes the conditions under which normal branching will

occur" (Afsarmanesh and others, 1985: 42-44).

Syntax: simple, alpha, omega, orfork, and-fork, or and-join.

1) "simple points have one in-arc and one out-arc. These points

represent events."

2) "alpha points have one out-arc and no in-arcs. These points

represent loop re-entry points. The out-arc must have an index subscription

as the loop is considered to be a (possibly infinite) set of instantiations of

the arc(s) between alpha and omega points."

3) "omea points have one in-arc and no out-arcs. The points

represent loop back jump points.'

4) "or-fork points have one in-arc and a number of out-arcs They

represent branch points. Each out-arc must have a predicate attached to it

describing the condition under which the arc is taken."

5) "and-fork points have a number of in-arcs and a single out-arc.

They represent points at which several disjoint executions paths merge.'

6) "and-join points have a number of in-arcs and a single out-arc.

They represent co-end points.'

Occurs: once.

Default: simple.

c. has-kind contains a record number for a timinqgmodel record which is

described by a different component model (Afsarmanesh and others, 1985.

-. 44).". 42).
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Syntax:- positive integer or NULL

Occurs: at most once.

Default: NULL

d. "asynchronous predicates describes the conditions under which branching

is not synchronized to a particular point in the time graph. (e.g., resets)"

(Afsarmanesh and others, 1985:- 42).

Syntax: positive integer or NULL.

Occurs: zero or more times.

Default. NULL.

e. instantiate-.and-m.iergi is a record number for the logical top of a

, previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

f. exed is a record number f or a previously printed record. Any record

which contains an extends attribute is a continuation record. The information

listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax: positive integer or NULL.

Occurs. at most once.

Default. NULL.
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13. single-value Record:

name
role
haskiInd
dataflow.netlist

single Instant late-and-merge
value extends

Figure B. 15: Single-Value Record.

Record Definition: The single value record characterizes either the initial

conditions or the results of a functional transformation of a component's

dataf low subspace.

Attribute Definitions:

a. name is the name of the single-value.

Syntax: any valid VHDL identifier or constant.

Occurs: at most once.

Default: NULL.

b. role is the index into a set of values which describe a dataf low) ink.

Syntax: integer or NULL.
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Occurs: at most once.

Default: NULL.

c. has-ind contains a record number for a dataflow-link record which is

described by a different component model (Afsarmanesh and others, 1985:

42).

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

d. dataflow._netlist contains a record number for a dataflow.net record.

Syntax: positive integer or NULL.

*Occurs: at most once.

Default: NULL.

e. instantate-and-merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

f. extends is a record number for a previously printed record. Any record

which contains an extends attribute is a continuation record. The information
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listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

14. structural-link Record:

name
complete bit
has-structural-dimension
persistence-storage-property

structural hassubl inLkconstituent
l i ink instantiate-and-merge

extends

Figure B. 16: Structural-link Record.

Record Definition: The structural-link record characterizes the shared

carrier dependencies between 1) a carrier and a module of the same

component and 2) carriers of two different components. Essentially, the

Structural-link is a binding.
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Attribute Definitions:

a. name is the name of the structural- ink.

Syntax: any valid VHDL identifier.

Occurs: at most once.

Default: NULL.

b. complete-bit indicates whether or not the description of the

structural-link is complete. The complete-bit attribute will appear in the

structural-link record when the description is not complete. Otherwise, the

description is assumed to be complete.

Syntax: true or false.

Occurs: at most once.

Default: true.0
c. has-structural-dimension is an integer indicating the size of the

structural-] ink.

Syntax: integer.

Occurs: at most once.

Default. 0.

d. Dersistence-storage_Dro;ertv describes the ability to store charqe

Under some circumstances charge storage can be used as a memory

mechanism.

Syntax. true or false.

Occurs: at most once.

Default: false.
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e. has-sublinLkconstituent contains a record number for a single-carrier

record which is described by a different structural-]ink.

Syntax: positive integer or NULL.

Occurs. at most once.

Default. NULL.

f. instantate-anclr erge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

g. xt.en is a record number for a previously printed record. Any record

which contains an extends attribute is a continuation record. The information

listed in such a record actually belonqs to the record referenced by the

extends attribute.

Syntax: positive integer or NULL.

Occurs. at most once.

Default. NULL.
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15. structural-model Record:

name
complete-bit
stat ic-storageDroDerty
hasstructuraldimension

structural has_ ink-constituent
model has-model-const ituent

instant i ate-and-merge
extends

Figure B. 17: Structural-model Record.

Record Definition: The structuraL._model record is one of three subspace

records; it characterizes the structure of a component. The structural-model

has two types of attributes which are explained at a lower level in the

hierarchy: modules and carriers. A module is similar to a block on a

schematic diagram indicating where a functional transformation occurs,

while a carrier is similar to a line on a schematic diagram indicating the path

for the results of a functional transformation.

Attribute Definitions:

a. name is the name of the structural-model.

Syntax: any valid VHDL identifier.

Occurs: at most once.

k.;: Default: NULL.
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b. completebit indicates whether or not the description of the

structuralmodel is complete. The complete-bit attribute will appear in the

structuraL-model record when the description is not complete. Otherwise,

the description is assumed to be complete.

Syntax true or false.

Occurs: at most once.

Default. true.

c. static-storagepropertv represents the modules ability to store a static

charge (i.e., registers). The model is assumed to not store a charge unless the

attribute is present in the structuraLmodel record.

Syntax: true or false.

Occurs. at most once.

WO Default: false.

d. has.structural-dimension is an integer indicating the size of the

structural-model.

Syntax: integer.

Occurs. at most once.

Default. 0.

e. has-link-constituent contains a record number for a single-carrier

record which is described by a structural-model.

Syntax: positive integer or NULL.

Occurs. at most once.

Default: NULL.
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,I f. has-model-constituent contains a record number for a single-module

record which is described by a structural-model.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

q. instantiate-andmerge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

h. extends is a record number for a previously printed record. Any record

which contains an extends attribute is a continuation record. The information

listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax: positive integer or NULL.

Occurs: at most once.

Default. NULL.
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16. structural-net Record:

'Is

subcarrier-path
visibility-bit
structura Lconnect ion
i nstanti ate-and-merge

structural extends
net

Figure B. 18: structural-net Record.

Record Definition: The structural-net record binds together carriers of

two different component.

Attribute Definitions: PS

/.

a. subcarrierDath is a record number for a lower level single carrier record

which describes the decomposition of the parent to the structural-net record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

b visibility-bit is a flag stating whether or not the structural-net can be

ccessed.
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Syntax. true or false.

Occurs: at most once.

Default: true.

c. structuraLconnection contains a record number for a record which

describes the structural connections for the structural network.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

d. instantiate-and-merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

e. extends is a record number for a previously printed record. Any record

which contains an extends attribute is a continuation record. The information

listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax. positive integer or NULL.

Occurs. at most once.

Default. NULL.
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17. structural-Din Record:

subcarrier-path
sinale.module
i nst ant i ate.andcLmerge
extends

structural
pin

Figure B.19: structural-pin Record.

Record Definition: The structural-Din record binds together a carrier and a

single-module of the same component.

Attribute Definitions:

a. subcarrier_.ath is a record number for the single-carrier associated

with the single-module.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

b. single-module contains a record number for a single-module record

Syntax positive integer or NULL
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Occurs. zero or more times.

Default: NULL.

c. instantiate-and-merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

d. extends is a record number for a previously printed record. Any record

which contains an extends attribute is a continuation record. The information

S listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax: positive integer or NULL.

Occurs. at most once.

Default. NULL.
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18. timing-link Record:

name
complete-bit
i nstantiate-and-merge
extendstiming _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

link

Figure B.20: Timing-link Record.

Record Definition: The timinglink record characterizes the shared point

(i.e., an instance of time) dependencies between points of two different

components. Essentially, the timing,link is a binding.

Attribute Definitions:

a. name is the name of the timing-link.

Syntax: any valid VHDL identifier.

Occurs: at most once.

Default: NULL.

b. complete-it indicates whether or not the description of the

..' timing-link is complete. The complete-bit attribute will appear in the
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timing-NJnk record when the description is not complete. Otherwise, the

description is assumed to be complete.

Syntax.- true or false.

Occurs: at most once.

Default. true.

c. instant iate-and-nerge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

d. exed is a record number for a previously printed record. Any record

which contains an extends attribute is a continuation record. The information

listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax.- positive integer or NULL.

Occurs. at most once.

Default. NULL.
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19. timin.model Record:

name
complete-bit
duration
causality

timing has-structural-dimension
model has linLconstituent

has-model-consti tuent
instant iateand-merge

_extends

A.A Figure B.21: Timing-model Record.

Record Definition: The timing.mlodel record is one of three subspace

records; it characterizes the timing and sequencing dependencies of a

component. The timing-model has two types of attributes which are

explained at a lower level in the hierarchy: ranges and points. A range

represents the time duration over which a functional transformation occurs,

while a point is a specific time which an event will occur.

Attribute Definitions:

a. name, is the name of the timing-model.

Syntax: any valid VHDL identifier.

Occurs: at most once.

ADefault: NULL.

B. 50



b. complete-bit indicates whether or not the description of the

timinq.model is complete. The complete-bit attribute will appear in the

timinqimodel record when the description is not complete. Otherwise, the

description is assumed to be complete.

Syntax. true or false.

Occurs: at most once.

Default. true.

c. duration indicates the length of the time interval.

Syntax: integer.

Occurs: at most once.

Default: 0.

d. causality indicates what caused the timing model record to be created.

Syntax. character string or NULL.

Occurs. at most once.

Default. NULL.

e. has-structural-dimension is an inteqer indicating the size of the

tim inqg.model.

Syntax: positive integer.

Occurs: at most once.

Default. 0.

f. has-link-constituent contains a record number for a record which

describes the single-points which make up the timing-model.
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Syntax. positive integer or NULL.

Occurs: at most once.

Default. NULL.

q. has-model)constituents contains a record number for a single-range

record which is part of a timinqmodel.

Syntax: positive integer or NULL.

Occurs: zero or more times.

Default: NULL.

h. lnstantiate-_and-merge is a record number for the logical top of a

previously printed DAG (i.e., a group of related records). The current record

needs a unique copy of that DAG in order to complete the DAG associated with

the current record.

Syntax: positive integer or NULL.

Occurs: at most once.

Default: NULL.

i. extends is a record number for a previously printed record. Any record

which contains an extends attribute is a continuation record. The information

listed in such a record actually belongs to the record referenced by the

extends attribute.

Syntax: positive integer or NULL.

Occurs. at most once.

Default. NULL.
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20. undefined Record:

name
type
where-used
came-from-type

undefined came-from name
f ind-in._type
f ind.in-name

Figure B.22: Undefined Record.

Record Definition: The undefined record specifies information related to

any VHDL identifier which was used in a VHDL source description but was not

defined in that description.

Attribute Definitions:

a. name an undefined VHDL identifier.

Syntax: any valid VHDL identifier or constant.

Occurs: at most once.

Default: NULL.

b. J= specifies how the identifier was used.

Syntax: signal, variable, function, procedure, architecture, package,
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configuration, interface, port, or parameter.

Occurs. at most once.

Default: no default.

c. w re-sed specifies the record number for the VIA record which used

the identifier.

Syntax: positive integer

Occurs. at most once.

Default. no default.

d. camefrom-tv e specifies the VHDL construct in which the identifier

was used.

Syntax. architecture, packaqe, interface, function, procedure, or

, confiqurat ion.

Occurs: at most once.

Default. no default.

e. camejfrom-name specifies the name of the VHDL construct which used

the undefined identifier.

Syntax: any valid VHDL identifier

Occurs: at most once.

Default. NULL.

f. find-iot specifies the VHDL construct in which the identifier was

expected to be found.

Syntax. packaqe, interface, confiquration, or unknown.

B. 54

ft S t ft . - .ft* t*,q



Occurs: at most once.

Default: unknown.

q. fin-in-name the name of the VHDL construct which should define the

undefined identifier (if known).

Syntax: any valid VHDL identifier.

Occurs. at most once.

Default. NULL.

21. v1atable Record:

component

package
undefined
root

viatable

Figure R23 - Viatahlp Record

Record Definition: The viatable record is the control record for the entire

VIA file (see previous discussion on the viatable structure in this appendix.)
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*Attribute Definitions:

a. component is the record number for a record which specifies a

component record.

Syntax: positive integer or NULL.

Occurs: zero or more times.

Default: NULL.

b. package is the record number for a record which specifies a package

record.

Syntax: positive integer or NULL.

Occurs: zero or more times.

Default: NULL.

* c. undefined is the record number for a record which specifies a undefined

record.

Syntax: positive integer or NULL.

Occurs: zero or more times.

Default. NULL.
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Appendix C: Example Test Data

This appendix provides a representative set of test cases which where

used to verity the language analyzers function. Each test case followed the
general procedures described in Chapter 5. The specific test cases varied
with respect to Input and output data. Therefore, only VHDL source code,
enhanced DDS, and VIA records are depicted for each test case. The VHDL
source code shows the language statements which were analyzed. The
enhanced DDS depicts the directed acycl ic graphs produced from the VHDL
statements. The VIA records represent the enhanced DDS. Because of the
repetitive nature of the test cases, a discussion of each test case procedure
is not provided. The interested reader Is referred to the discussion presented
In Chapter 5.
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Test Case I.

S VHDL Source Code:

entity INTERFACENAME is

comonnt

viatable

name: INTERFACE NAME
complete bit: true

component ooeratlon bindings: null
dataf low model: null
timing model: null
structural model: null

Figure C. 1: Test Case I.

VIA Reoresentation:

0 vlatable ( component I;
I component ( name - INTERFACELNAME ;)

C. 2



Test Case 2.

AI IDL Source Code:

pxkagev PACKAGL-NA!IE is
procedur k..PROCEDURL-NAIIE Is

begin
en4

ehned;U5

coonponst&.biL:

dutnde..niosl NULL

root:____ NULLLL

VIA Reoresentat Ion:

A5.

Oviatablepackage 1,)s
1 acag nae PCAGNAI;component =2;)-n 7 NL

2 coponet ( ame .~PRCEDUEJIiE , competeo...bt NUfLeL
extenh: 4.

Figue C.: Tet Cae 2

C. 3



Test Case 3.

VHOL Source Code:

procedure PROCEDURE-NAME is
begin

null,-
end,,"

compomwUl::

violble packge:NULL
Ol:Nundefined: NULL

root: ~ mdM NULLLL

C elta-~bit: false
pation..bindig NULL

structwal.inodsl: NULL
InstvuUwln" NUL
extends: NULL

Fiqure C.3: Test Case 3.

VIA Representation:

0 viatable ( component I;)
1 component ( name = PROCEDURE_.NAME ; complete-bit = false;)

Test Case 4.

VHDL Source Code:

function FUNCTION-NAME return A.TYPLMARK i"

null;end, ,

C. 4 45
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vistoble

ram: FUJNCTION-NAME
7Gmpl~t.bL: Q98s
awperutNbnlNg: NULL
detaflowmaki: NULL

compnenit UmiirM:NL
strsUctrsLnoduI: NUA.L.

________extend.: NULL

DOWe A3IYELMAIM
comuleta..bit: raise

dataflow hu.-sthixntconstmn: 0M

Figure C.4: Test Case 4.

VIA Representation:

0Oviatable (component= -;)
I component ( name =FUNCTIONLNAIIE ; complete-.bit - false;)
2 datar low-] ink ( name = A-.TYPEJIARK ;complete..btt f false)

TesL Case 5.

VHDL Source Code:

aracl/tecture ARCH I TECTURL-NAIIE
of INTERFACL-NAME Is

A...BLOCICLABEL block
begin

process
begin

null,
end process;

end block;

C. 5



views~biL false M

sprUon..blndln: NW.L
dutaflow-model: NW.L

ine:e ARCNlTECTUVKJ4A
comleua..b false
gtuk-.storaas...wowiv: false

strxUrs~l twustrure~lmnraon: 0
model has-JWAcocn9UtwAn: t.L

hamodel-snsU Went: ILL
ext" d: IULL NL

Figure C.5: Test Case 5.

VIA Reoresentat Ion:

0 viatable ( component - I
1 component ( name -INTEIFACL-NAME ; structural-model - 2; complete-bit
alase; )

2 structural-model ( name - ARCHITECTURAL.NA1E ; complete-bit false)

Test Case 6.

VHDL1 source Code:

conf;9rat/on CONFI GURAT IOfNLNAM-E
Of INTERFACL-NAIIE
for ARCHITECTURE-NAMIE Is

C. 6



enhan~d MS

kmbn-mmW: ULL
____ ue: ML

WIM .

Figure~~jmM C.: es Cse6

VIA Reoresen NULL

of fase 41)e li.f

M.S.

Figur C.6:Test ase 6
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